End point Detection in Precipitimetry

Volhard's method

Direct

□Ag⁺ ions titrated by thiocyante using ferric alum as indicator

□End point: First faint red color

Known excess standard AgNO₃ precipitate halides, cyanide, phosphate then <u>back titrate</u> excess unreacted AgNO₃ by thiocyante using ferric alum as indicator End point: First faint red color

Indirect

Determination Of Silver sample

Volhard's method

Principle

- □ In Acidic medium (pH 1-3)
- □ Ag ions titrated by thiocyante using ferric alum as indicator
- \Box Ag⁺ + NH₄SCN \rightarrow AgSCN ppt
- □ First drop excess of NH₄SCN will react with the Ferric alum indicator
 - $Fe^{3+} + 2NH_4SCN \rightarrow [Fe(SCN)_2]^+ + 2NH_4^+$

End point: First faint red color

Volhard's method is used in acidic medium (pH 1-3) .. Why?

In Acidic medium

- Red color (at end point) is stable in acidic medium
- ✓ Fe³⁺ in indicator is colorless, easier to detect end point

In alkaline medium

- × Ag⁺ is precipitated as Ag₂O (Black ppt.)
- × Fe³⁺ is precipitated as Fe(OH)₃ (Red ppt.)

Acidity of the medium is adjusted using HNO_3 ... Why ? Because all NO_3^- salts are soluble But ... H_2SO_4 is NOT used \longrightarrow to prevent pptn of Ag_2SO_4 CH_3COOH is NOT used \longrightarrow to prevent formation of ferric acetate (red color) $Fe(CH_3COO)_3$

2- Procedure

In Conical Flask

10 ml Sample + 1ml ferric Alum (indicator) + 1ml Conc. HNO₃ Titrate against N/40 NH₄SCN End point: 1st change in colour (red)

3- Calculation

Determination Of Chloride sample

Volhard's method

In Acidic medium (pH 1-3) Known excess standard $AgNO_3$ precipitate chloride, then <u>back titrate</u> excess unreacted $AgNO_3$ by thiocyante using ferric alum as indicator End point: First faint red color

 $Ag^+ + CI^- \longrightarrow AgCI$

 $Fe^{3+} + 2SCN^{-} \longrightarrow [Fe(SCN)_2]^+$ Red color

Procedure

In 100 ml measuring flask

10 ml Sample + 25 ml ^N/₄₀ AgNO₃ + 1 ml Conc. HNO₃ + complete to the mark with distilled water & Mix well + Filter —→ wash the flask with 1st 10 ml of filtrate then discard

In Conical Flask

25 ml of the filtrate (bulb or burette) + 1ml ferric alum Titrate against $\frac{N}{40}$ NH₄SCN End Point: first faint red color

Only titration of 25 mls of 100 mls

Concn. of CI⁻ = [25-(mls x 4 x f)] x F x 1000

10 (sample volume)

Thank You

