

Volumetric method involves formation of practically insoluble salt using precipitating agent

- ✓ The ppt. must be practically insoluble
- Rapid precipitation
- ✓ Easy detection of end point

1				
-	_	_	_	_

Substance with lower ksp precipitates first

During precipitation of mixture of I⁻, Br⁻, Cl⁻ with AgNO₃

Agl precipitate first then AgBr then AgCl

because Ksp AgI < Ksp AgBr < ksp AgCI

Gradual pptn. is due to difference in ksp called <u>Fractional precipitation</u> **End point Detection**

Determination of Chloride sample

Mohr's method

1- Principle Mohr's Method

Direct Argentometry

In neutral or slightly alkaline medium (pH 7-9)

Chloride sample is titrated with Std. $AgNO_3$ forming AgCl ppt. using n-chromate as indicator

 $NaCI + AgNO_3 \longrightarrow AgCI + NaNO_3$

After precipitation of all Cl⁻

first drop excess of St. AgNO₃ react with n- chromate

 \longrightarrow Ag₂CrO₄ brick red ppt.

Mohr's Method

The yellow color of n-chromate masks the end point \rightarrow so used in very diluted solution (0.002- 0.005 M)

Saturated with $AgNO_3$ BUT still needs Ag^+ to exceed ksp of Ag_2CrO_4

10 ml distilled H₂O + talc or CaCO₃ (free of Cl⁻) + 1ml n-chromate \longrightarrow titrate against N/40 AgNO₃ till <u>first faint brick red</u>

To cancel the amount of $AgNO_3$ needed to produce detectable quantity of Ag_2CrO_4 ppt to <u>human eye</u> especially when using dilute solution of chromate indicator

Blank is **Subtracted from** mls of experiment as correction factor to cancel error resulting from late detection of end point in medium

In Conical Flask

10 ml Sample + 1 ml n-chromate ≠

N/40 AgNO₃

End Point : Buff color

N.B. In precipitimetry, <u>GENTLE shaking</u> is required .. To prevent coagulation of ppt.

3- Calculation

$$1AgNO_3 + 1NaCI \longrightarrow AgCI + NaNO_3$$

Std (left) \equiv Sample(right)

 $1 \text{ mole AgNO}_3 \equiv 1 \text{ mole NaCl}$

1L 1M AgNO₃ \equiv M.wt NaCl

1L 1N AgNO₃ $\equiv \frac{\text{M.wt NaCl}}{1}$

 $1 \text{ml} \frac{1}{40} \text{AgNO}_3 = \frac{\text{M.wt NaCl (58g/mole)}}{1 \times 40 \times 1000} = 0.00145 \text{ g NaCl}$

Conc of CI⁻=
$$\frac{(mls-Blank)\times F\times 1000}{10}$$

AgNO₃ is a primary standard

1 Liebeg's method

2 Denige's method

Every Student Must ..

- Never pipette the sample by mouth .. Use the burette for taking the sample
- Make the titration carefully
- Wash his hands thoroughly after the end of experiments

1- Principle Liebeg's method

No indicator method

Cyanide ion titrated by AgNO₃ forming AgCN ppt,

Due to excess of CN⁻ in the medium the ppt. will dissolve forming argento-cyanide soluble complex .

When all CN⁻ consumed the first drop of Ag⁺ form insoluble silver argentocyanide (White ppt.)

End Point: First turbidity

Silver argentocyanide (white ppt.)

In Conical Flask

10 ml Sample \neq N/40 AgNO₃

End Point : First Turbidity

N.B. Titration is done against <u>dark background</u>

3- Calculation

$$1 \text{ml} \frac{1}{40} \text{AgNO}_3 = \frac{2 \times \text{M.wt KCN}(65 \text{g/mole})}{1 \times 40 \times 1000} = 0.00325 \text{ g KCN}$$

Conc of CN⁻ =
$$\frac{mls \times F \times 1000}{10}$$
 = g/L
AgNO₃ is a primary standard

2 Denige's Method

Modification of liebeg's method to render the end point more clear

Using <u>KI in ammonical medium</u> to detect the end point

The end point will be <u>yellow turbidity of Agl</u> as it has lower solubility product.

$$\begin{array}{c} \operatorname{Ag}[\operatorname{Ag}(\operatorname{CN})_2] + 2\operatorname{NH}_3 \longrightarrow [\operatorname{Ag}(\operatorname{NH}_3)_2]^+ + [\operatorname{Ag}(\operatorname{CN})_2]^-\\ \operatorname{Silver \ ammine\ complex} & \downarrow^{\Gamma}\\ \operatorname{AgI} + 2\operatorname{NH}_3\\ \operatorname{Yellow\ ppt} \end{array}$$

In Conical Flask

10 ml Sample + 2 ml dil NH₃ + 1ml Kl ≠ N/40 AgNO₃

End Point : First YELLOW Turbidity

3- Calculation

Same as leibeg's method

$$1 \text{ml} \frac{1}{40} \text{AgNO}_3 = \frac{2 \times \text{M.wt KCN}(65 \text{g/mole})}{1 \times 40 \times 1000} = 0.00325 \text{ g KCN}$$

Conc of CN⁻ =
$$\frac{mls \times F \times 1000}{10}$$
 = g/L
AgNO₃ is a primary standard

Week	Date	Subject	
1	21/2/2016	Glass ware	
		Preparation and standardization of 0.1 N NaOH	
2	28/2/2016	HCl sample, acetic acid sample	
3	6/3/2016	HCI/acetic acid mixture	
4	13/3/2016	Na ₂ CO ₃ sample, CaCO ₃ sample	
5	20/3/2016	1 st Exam + 1 st Qz	
6	27/3/2016	Determination of Cl ⁻ (mohr's method)	
		Determination of CN ⁻	
7	3/4/2016	Volhard (direct - back)	
8	10/4/2016	Determination of I ⁻ / Cl ⁻ mixture	
9	17/4/2016	2 nd Exam + 2 nd Qz	
10	24/4/2016	Gravimetry and Presentation	

Thank You

