
Determination of HCl/Acetic acid sample

1-Principle

HCI is Strong acid — Completely ionized CH₃COOH is Weak acid — Partially ionized

$$HCl \rightarrow H^{+} + Cl^{-}$$

 $CH_{3}COOH \rightleftharpoons H^{+} + CH3COO^{-}$

Common ion effect

HCl hinders ionization of CH₃COOH ———— HCl reacts <u>first</u> without interference of CH₃COOH


When all HCl is reacted CH₃COOH begins to ionize and reacts with NaOH.

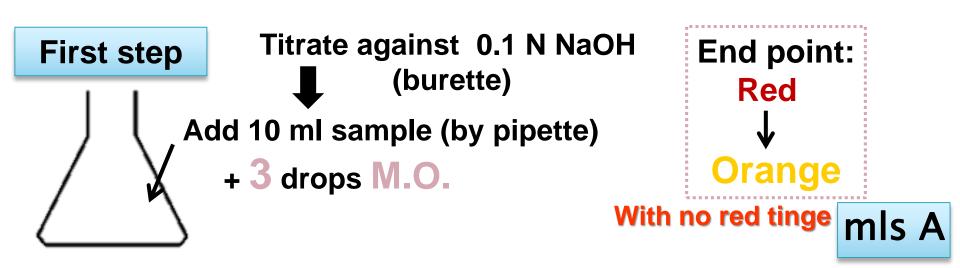
First step

strong acid ≠ strong base

Second step
weak acid ≠ strong base

At the end point, the following are present:

Two indicators in the <u>same flask</u>


Conditions required for double indicator method

✓ Both
$$K_1 \& K_2 > 10^{-7}$$

$$✓ \frac{K_1}{K_2} > 10^4$$

N.B. Ka of Acetic acid = 1.8×10^{-5}

2-Procedure

On the same flask

Second step

Add 10 drops Ph.Ph.

Titrate against 0.1 N NaOH

End point: first Pink

mls B

$$Conc. \, of \, HCL = \, \frac{mlsA \times f \, \times F \, \times 1000}{10} = \qquad \qquad g/L$$

$$Conc. \, of \, acetic \, acid = \, \frac{mlsB \times f \, \times F \, \times 1000}{10} = \qquad \qquad g/L$$

pH CALCULATIONS

Strong Acid	Strong Base	Weak Acid	Weak Base
pH=-log [H ⁺]	pOH= -log[OH-]	$pH = \frac{1}{2} pC_a + \frac{1}{2} pK_a$	$pOH = \frac{1}{2} pC_b + \frac{1}{2} pK_b$
	pH = 14 - pOH		$\mathbf{pH} = \mathbf{pK}_{\mathbf{w}} - \frac{1}{2}\mathbf{pC}_{\mathbf{b}} - \frac{1}{2}\mathbf{pK}_{\mathbf{b}}$

Acidic Buffer	Basic Buffer	
$pH = pK_a + log \frac{Salt}{Acid}$	$pOH = pK_b + log \frac{Salt}{Base}$ $pH = pK_w - pk_b - log \frac{Salt}{Base}$	

		Dasc	
S _(sA-sB)	S _(wA-sB)	S _(sA-wB)	S _(wA-wB)
KCl	Sod. acetate	NH ₄ Cl	Ammonium acetate
neutral	$^{1/2}pK_{w} + ^{1/2}pK_{a} - ^{1/2}pC_{s}$	$^{1}/_{2}pK_{w} - ^{1}/_{2}pK_{b} + ^{1}/_{2}pC_{s}$	$^{1/2}pK_{w} + ^{1/2}pK_{a} - ^{1/2}pK_{b}$
3/2/2016 2:40 PM		Dr. Said A. Hassan	7

Problems:

Assuming that pK_a of acetic acid = 4.7, calculate pH of:

- 1 buffer containing 0.1 N acetic acid and 0.01N sodium acetate
- 2- buffer containing 0.01 N acetic acid and 0.1 N sodium acetate
- 3-buffer containing 0.1 N acetic acid and 0.1 N sodium acetate
 - □ Given that pk_b of $NH_4OH = 4.7$, calculate pH of:
 - a. 0.1 M NH₄OH
 - b. 0.1 M NH₄Cl
 - c. Buffer containing 1 M NH₄OH and 0.5 M NH₄Cl
 - What is the pH of acetic acid/sod acetate buffer containing 0.2 M salt and 0.3 M acid? If 1 L of water is added, what will be the pH?

Thank You