Determination of Calcium/Magnesium sample

□ Calcium and magnesium supplement

Ca²⁺ Only

Principle

Total Ca^{2+/} Mg²⁺

- At <u>pH =12</u> murexide form complex with calcium only while magnesium ppt as Mg(OH)₂.
- If solution contain both calcium and magnesium is treated with murexide and then titrated with EDTA <u>only calcium</u> will be measured

End point Pink (metallized form)

> Purple (free form)

If <u>EBT</u> is added to a solution containing calcium and magnesium and the solution is titrated with EDTA (in ammonia buffer),

<u>calcium will react first</u> followed by Mg²⁺ from its complex (Mg-EBT).

This would be a measure of both calcium and magnesium

Blue+violet tinge

FullBlue

End point: Wine red

Ca/EDTA complex is more stable than Mg/EDTA complex

In Ca^{2+/} Mg²⁺ sample, Ca²⁺ is determined at pH= 12 .. Why?

- Mg²⁺ will be precipitated as Mg(OH)₂, so removal of interfering ion by separation (precipitation)
- 2) pH 12 gives maximum stability for Ca/EDTA complex

2- Procedure

Total Ca^{2+/} Mg²⁺ In a <u>new</u> Conical Flask

- 10 ml Sample
- + 2 ml NH₃ buffer
- + few specks EBT (Wine Red color)
- Titrate against 0.01M EDTAEnd point: Full bluemls B

$$F_{Mg}^{2+} = 0.00246 g$$

Determination of Aluminium sample

1- Principle

Indirect Complexometry

Al³⁺ form <u>strong</u> aqua complex which needs <u>heating</u> to be broken in order to react with EDTA, so Al³⁺ determined by Back titration

Reaction between EDTA and $ZnSO_4$ is done at pH= 10 (using NH₃ buffer)

To give the maximum stability for Zn/EDTA

Reaction between Al³⁺ and EDTA is done at pH= 7- 8 (using dil NH₃)

- 1) To give the maximum stability for AI/EDTA
- If pH 10 is used, Al³⁺ will be precipitated as Al(OH)₃

2- Procedure

In Conical Flask

- 10 ml Sample + 25 ml 0.01M EDTA
- + 4 dps dil $NH_3 \longrightarrow$ to adjust pH at 7- 8
- + Boil for 10 min.

put a funnel on the conical flask to minimize evaporation
Once the flask boils, lower the flame

+ Cool well

- + 2ml NH_3 buffer \longrightarrow to adjust pH at 10
- + few specks EBT (Full Blue color)

Titrate against 0.01M ZnSO₄ End point: Wine Red

1 ml of 0.01 M EDTA = 0.004743 g

Mercurimetric determination of lodide sample

1- Principle

Mercurimetric determination

lodide may be determined by titration with $Hg(NO_3)_2$. First a soluble colorless complex $(HgI_4)^{2-}$ is formed. At the end point, first excess mercuric ions react with the complex forming \longrightarrow red ppt of HgI_2

$$Hg^{2+} + 4I^{-} \longrightarrow Hgl_{4}^{2-}$$

Excess Hg²⁺ + Hg $I_4^{2-} \rightarrow 2HgI_2 \downarrow red ppt$

2- Procedure

In Conical Flask

10 ml Kl sample Titrate against N/40 Hg(NO₃)₂ End point: first red Turbidity

Conc. of iodide =

$F_{1^{-}} = 0.0083 \text{ g}$

g/L

Thank You