Zinc oxide nanoparticles characterization and therapeutic evaluation on high fat / sucrose diet induced-obesity

Ahmed M. A. elseidy,1 Samir A Bashandy,2 Fatma A. A. Ibrahim, 3 Sahar S. Abd El-Rahman,4 Omar Farid, 5 Sherif Moussa, 3 Marwan A. El-Basit2

1 Inorganic Chemistry Dept, National Research Centre, 33 El-Bohouth St., P.O. 12622, Dokki, Cairo, Egypt.
2 Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622, Cairo, Egypt.
3 Biochemistry Dept, Biotechnology Institute, National Research Centre, 33 EL BohouthSt., Dokki, Cairo, Egypt.
4 Pathology Dept, Faculty of Veterinary Medicine, Cairo University.
5 Researcher, National organization of drug control and research

Abstract
ZnO/KCl nanocomposite was prepared by solgel to appreciate the role of synthesized ZnO-NPs to curb obesity in a high-fat diet rat model. KCl played an important role in decreasing the particle size (30 nm) and also in facilitating the suspension formation of ZnO-NPs. XRD and HRTEM were carried out to estimate the particle size while SEM was used to investigate the morphology of the nanoparticles. XPS measurements were used to examine the chemical compositions of the nanocomposite. XRD declared that ZnO has a hexagonal wurtzite structure. The Rietveld refinement has also been executed (chi² = 1.0 and R-factor was 0.05). The treatment of obese rats with ZnO-NPs enhanced the adiponectin level, hepatic carmine (Car) and reduced hepatic glutathione (GSH) with lowering the liver enzymes and pathological changes. The treatment caused a decrease in body weight gain, Body mass index (BMI), leptin level, cholesterol, triglycerides, glucose, immunohistochemistry for nuclear factor kappa (NFkB), the insulin resistance index (HOMA-IR) and a reduction in hepatic malondaldehyde (MDA), nitric oxide (NO), and 8-Hydroxy-2’-deoxyguanosine (8OHdG). The results indicated a positive correlation between BMI and oxidative stress parameters. In conclusion, ZnO-NPs manifested valuable anti-obesity effects via lowering body weight gain, oxidative stress, BMI, lipids, and insulin resistance.

Keywords: ZnO-NPs, Rietveld analysis, obesity, metabolic syndrome, inflammatory markers, oxidative stress.

1- Introduction
Nanomaterials have unparalleled chemical and physical properties, enormous surface area to mass proportion and high reactivity. These properties can be used to solve some of the obstacles in the therapeutic and diagnostic representatives 1. In a nanoscale, ZnO is one of the most valuable metal oxides; it is characterized by distinctive chemical and physical properties and participates in diverse biomedical fields such as biomedical imaging, drug delivery, gene delivery, and biosensing of a wide array of molecules 2. Medically, ZnO-NPs exhibited antibacterial, anti-diabetic, antioxidant and anticancer effects 3,4. Zinc is a primary trace mineral element and has an important function in the metabolism of lipids in the liver. It stimulates lipolysis in hepatic cells, decreasing lipid accumulation and promoting lipolysis 5. ZnO-NPs conquer liver fibrosis induced experimentally by thioacetamide and modulate liver enzymes via reducing oxidative stress 6. ZnO-NPs lowered hepatic steatosis and peripheral insulin resistance result from non-alcoholic fatty liver disease 7. ZnO-NPs showed anti-inflammatory properties as they downregulate the level of iNOS, COX-2, IL-1b, IL-6 and TNF-α 8. In young obese women, there is a negative association between zinc consumption and IL-6 or leptin levels, indicating that zinc may have a substantial impact on obesity-related inflammation 9. Supplemening obese people with zinc reduced their BMI, body weight, and triglyceride levels while having no effect on their lipid profile or glucose level. Obese persons may benefit from zinc as a complementary treatment 10. Zn is required for the activity of enzymes associated with energy metabolism. It also affects the hormones which regulate body fat, including leptin, insulin, and adiponectin 11.

It is well known that bad lifestyle behaviors, such as unhealthy dietary habits are associated with many negative health consequences like weight gain and
obesity. The Western diet is heavy in carbohydrates including fructose and sucrose, and saturated fat (high caloric diet), leading to metabolic syndrome and non-alcoholic fatty liver problems. Obesity develops when there is an energy imbalance among calories consumed and calories expended. A body mass index is implicated in the description of obesity. Obesity, a nutritional disorder, has become predominant in many countries worldwide. Overweight people’s account for around 2 billion people, with one-third of them being obese. Obesity has been accompanied with some health complications as non-alcoholic fatty liver disease (NAFLD), type 2 diabetes mellitus, metabolic syndrome, hyperlipidemia, cardiovascular disease, and hypertension. NAFLD was shown to have significant amounts of fat accumulation (steatosis), inflammation, cell death, and fibrosis in the liver. High ALT levels, triglycerides, glucose, insulin, and blood pressure were found in Egyptian obese adolescents with NAFLD, although low HDL-C levels were found. The link between obesity and inflammation has been well concluded from an elevation in the levels of cytokines recognized in obese patients. Obesity is associated with high levels of free fatty acids, which increase the formation of oxygen free radicals, resulting in oxidative stress and insulin sensitivity. Adipokines have a role in the progression of obesity-related insulin resistance.

The purpose of our study is the evaluation of efficacy of ZnO NPs (IP injection) for 6 weeks in the treatment of obesity and its complications via the study of inflammatory markers, oxidative stress, lipid profile and adipocyte hormones.

2- Experimental

2.1- Synthesis of ZnO/KCl nanocomposite

The nanocomposite was synthesized using sol–gel method. Practically, 2 g of polyethylene glycol (8000 LR) was dissolved in 480 mL of DD (double distilled water). The resulting solution was divided into two equal portions to dissolve 6.28 g of zinc chloride (ZnCl₂, 46.07 mmol) and 10.11 g of zinc acetate dihydrate (Zn(CH₃COO)₂·2H₂O, 46.07 mmol), respectively. The solution of the latter was added slowly (over 30 m) with constant stirring (1000 rpm) at 80°C to the former then the formation of hydroxide solution (2.58 g KOH, 46.07 mmol in 100 mL DD) was added drop-wisely (over 50 m). After converting the solution into a gel, it was dried before being crushed into granules, calcined at 600°C for four hours in an air environment in a furnace and then crushed again.

2.2- Experimental systems

The XRD patterns were obtained from X'pert PRO diffractometer with a Cu-radiation (λ = 1.542 Å) at 45 K.V. and 35mA over the range of 2θ = 20° - 60° and the average size of the crystallites was calculated by Debye-Scherrer equation. Morphology was examined under SEM Philips apparatus, USA, type QUANTA FEG 250. The morphology, surface structure and size of the powder were examined under a transmission electron microscope. HR-TEM was carried out using TEM model JEOL 2100 LB6 transmission electron microscope at the National Research Center, Cairo, Egypt. XPS was collected on K-ALPHA (Thermo Fisher Scientific, USA) with monochromatic X-ray Al K-alpha radiation from 10 to 1350 e.v spot size 400 micro m at pressure 10⁻⁹ mbar with full spectrum pass energy 200 e.v and at narrow spectrum 50 e.v.

2.3- Experimental Protocol

Thirty-two Wistar adult male rats at the age of 10 weeks weighing 138-155 g (Animal house of National Research Center, Egypt) were stayed at stable room temperature (25°C) with a 12 h light/dark cycle and free access to food and water. The animals were left a week for adaptation. Eight rats were kept as control and others were given a high-fat diet and water from the tap with 25% sucrose for 16 weeks to develop obesity. The high-fat diet consists of carbohydrate 42.3%, protein 17%, fat 22.50%, fiber 3.2%, minerals 5%, and moisture 10%. Normal rats were fed free standard chow pellets.

The rats were separated into 4 groups: -

1st Group: Normal rats served as control

2nd Group: Obese rats injected with the same volume of vehicle

3rd Group: Obese rats treated with 5mg/Kg ZnO-NPs (IP injection) for 6 weeks

4th Group: Obese rats treated with 10mg/Kg ZnO-NPs (IP injection) for 6 weeks

The doses of ZnO-NPs used were according to previous work. ZnO-NPs were suspended in distilled water. Animal handling was carried out according to recommendations and under Animal Care and Use of National Research Centre regulations in Egypt with ethical approval No.19218. All surgery was performed under anesthesia, and efforts were made to reduce suffering.

2.4- Anthropometric measures

Body mass index (BMI) can be calculated depending on the height and weight of the rat according to the formula: “BMI = body weight (g)/height (cm)”. The circumference of the waist was measured. BW was recorded at basal till the sixth week (two-week interval).

2.5- Samples

At the completion of the therapy period, the rats of all groups were fasted for about 10 hours. Blood samples were collected from a retro-orbital vein and separated plasma was stored in Eppendorf tubes at -30° for biochemical analysis.
Immediately after blood sampling, animals were sacrificed by cervical dislocation under ether anesthesia then livers were collected. A weighed part of the liver was homogenized with ice-cooled saline (0.9% NaCl) to prepare homogenate. The latter was then centrifuged at 3000 rpm for 10 min. at 5°C using a cooling centrifuge “Laborzentrifugen, Sigma, Germany”. The supernatant was used for various analyses. The remaining portion of liver was fixed immediately in 10% neutral buffered formalin, processed for light microscopy to get (5μm) paraffin sections and stained with “Hematoxylin & Eosin (H &E)” to verify histological details. Furthermore, immunohistochemistry was performed on certain liver sections.

2.6- The adipocyte hormones
An immunoaassay method was used to determine the levels of plasma leptin and adiponectin (ELISA, Sunlong Biotech Co. Kit, China).

2.7- Insulin resistance parameters
Blood glucose was determined calorimetrically following the instruction of the Salucea Company kit. Plasma insulin was assayed by immunoassay (ELISA) according to the instruction of Sunlong Biotech Co. Kit (China). Insulin resistance index (HOMA-IR) was estimated from the equation “(HOMA-IR): {(fasting glucose [mg/dL]) · (fasting insulin [µU/mL])} ÷ 405”.

2.8- Liver function tests and lipid profile
AST, ALT, GGT, cholesterol, triglycerides, LDL, and HDL were calorimetrically determined in blood plasma using kits from the Salucea Company in the Netherlands.

2.9- Inflammatory markers
TNF-α, CRP, IL2, and IL6 levels were determined by the ELISA technique (Sunlong Biotech Co. Kit, China).

2.10- Hepatic Oxidative stress parameters
The levels of hepatic MDA, GSH, GSSG, NO, and Car were measured using an "Agilent HP 1200 series (USA) HPLC system" that included a quaternary pump, a column oven, Rheodine injector, and a 20 μl loop, as well as a UV variable wavelength detector. The sample concentration was determined from the resulting chromatogram using “Sigma Aldrich standard”.

2.11- Determination of Hepatic ATP and 8-OHdG and AMP
The detection of ATP was done by HPLC. Isolation and hydrolysis of hepatic DNA were performed as previously described. The hydrolyzed mixture was centrifuged and the supernatant was injected into the HPLC. The separation of 8-OHdG was performed with an LC/Agilent 1200 series HPLC apparatus (USA) using UV detectors.

2.12- Histopathological and immunohistochemical evaluations
Formalin-fixed liver specimens of all groups were routinely processed for getting paraffin blocks, then serial sections of 4–5 μm were obtained and stained with hematoxylin and eosin (H&E). The histological lesions were described according to the criteria established by Brunt et al., based on the percentage of involved hepatocytes and its zonal distribution, where; macro-vesicular steatosis is quantified (0 = absent; 1 (mild) < one third; 2 (moderate) = one to two-thirds; 3 (severe) > two-third), and the presence of micro-vesicular steatosis were recorded. Hepatocellular ballooning was evaluated for its zonal distribution as well as its severity (mild, marked) based on the numbers of hepatocytes showing this abnormality.

“Avidin-biotin peroxidase” technique “(DAB, Sigma Chemical Co.)” was used for immunohistochemical detection of NF-κB p65 expression in liver of all groups. Paraffin sections were incubated with monoclonal antibody of NF-κB p65 (Dako Corp, Carpenteria, CA) at dilution of 1:200 as well as with the reagents endorsed for “avidin-biotin-peroxidase technique (Vactastain ABC peroxidase kit, Vector Laboratories)”.

3- Results

3.1- ZnO/KCl nanocomposite
Fig. 1-a illustrates the XRD patterns of the nanocomposite. The diffraction peaks at 31.83°, 34.47°, 36.35°, 47.61° and 56.64° are indexed to (100), (002), (101), (102) and (110), respectively for standard hexagonal wurtzite structure of ZnO with space group P 63 m (c = 3.244 nm, a = 0.5199 nm, interplanar spacing d = 3.10 nm). The crystallographic parameters were computed from the nanocomposite XRD. In case of ZnO-NPs, the values of unit cell parameters a = b and c and interplanar spacing d were calculated from hexagonal wurtzite structure. This equation may be simplified by using planes (100, 002, 101). The calculated cell parameters are a = b = 3.244 nm, c = 0.5199 nm, interplanar spacing are

Egypt. J. Chem. 65, No. 9 (2022)
$d_{100} = 0.2809 \text{ nm}, \, d_{001} = 0.2600 \text{ nm} \text{ and } d_{101} = 0.2469 \text{ nm},$ axial ratio (a.r.) = 1.6030, unit cell volume (V) = 0.0474 nm3, oxygen-position parameter (u) = 0.3797 and zinc–oxygen bond length (L) = 0.1974 nm. The calculated cell parameters of KCl are $a = b = c = 0.5210$ (0.5206) nm, $\alpha = \beta = \gamma = 90^\circ$ and $\gamma = 120^\circ$. The average particle diameters are about 34.51 nm (length). The XPS spectrum of ZnO deconvoluted into two valence states peaked at Zn$-2p_{3/2} = 1021.16$ eV and Zn$-2p_{1/2} = 1044.12$ eV binding energies. The XPS spectrum of O-1s showed two peaks at 531.29 eV and 529.56 eV while that of C-1s showed multiple peaks at 284.59, 284.96, 286.27, 288.37 and 289.44.

Table 1 Atomic and structural parameters.

<table>
<thead>
<tr>
<th>Element</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Occ.</th>
<th>B</th>
<th>Site</th>
<th>Lattice parameter</th>
<th>Cell Volume (nm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn</td>
<td>0.3330 (0.3300)</td>
<td>0.66700 (0.66700)</td>
<td>0.49700 (0.50000)</td>
<td>1.012 (1.000)</td>
<td>0.784 (0.491)</td>
<td>6c</td>
<td>$a = b = 0.3251$ (0.3249) nm, $c = 0.5210$ (0.5206) nm, $\alpha = \beta = \gamma = 90^\circ$</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>0.66700 (0.66700)</td>
<td>0.33300 (0.33300)</td>
<td>0.37500 (0.37900)</td>
<td>1.302 (1.000)</td>
<td>1.270 (0.459)</td>
<td>6c</td>
<td>$\gamma = 120^\circ$</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>0.00000 (0.00000)</td>
<td>0.00000 (0.00000)</td>
<td>0.00000 (0.00000)</td>
<td>0.998 (1.000)</td>
<td>1.389 (1.000)</td>
<td>4a</td>
<td>$\gamma = 120^\circ$</td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>0.50000 (0.50000)</td>
<td>0.50000 (0.50000)</td>
<td>0.50000 (0.50000)</td>
<td>1.046 (1.000)</td>
<td>0.175 (1.000)</td>
<td>4b</td>
<td>$\gamma = 120^\circ$</td>
<td></td>
</tr>
</tbody>
</table>

*Refined parameters data (reference code), 96-230-0451 for ZnO and 96-900-3113 for KCl.

Table 2 Structural parameters of the ZnO/KCl nanocomposite.

<table>
<thead>
<tr>
<th></th>
<th>2θ</th>
<th>FWHM</th>
<th>Crystal size</th>
<th>Microstrain $\varepsilon \times 10^{-3}$</th>
<th>Specific surface area S (m2 g$^{-1}$)</th>
<th>Lorentz factor L_T</th>
<th>Thomson polarization parameter I_T</th>
<th>Lorentz polarization parameter L_P</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnO</td>
<td>36.35</td>
<td>0.2755</td>
<td>30.0121</td>
<td>3.6616</td>
<td>35.1909</td>
<td>2.7045</td>
<td>0.8243</td>
<td>17.8352</td>
</tr>
<tr>
<td>KCl</td>
<td>28.49</td>
<td>0.1600</td>
<td>50.6564</td>
<td>2.7499</td>
<td>59.4604</td>
<td>4.2598</td>
<td>0.8862</td>
<td>28.837</td>
</tr>
</tbody>
</table>

Table 3 The calculated bond length and bond angle from the refined cif file of both phases and the cif files of their reference cards.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Bond length (Å)*</th>
<th>Bond angle (deg.)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)-Zn</td>
<td>1.96919 (1.97296)</td>
<td>O(1)-Zn-O(1) 108.6968 (108.5516)</td>
</tr>
<tr>
<td>ZnO</td>
<td>O(1)-Zn-O(2) 108.7230 (108.5775)</td>
<td>Zn-O(2)-Zn 108.7230 (108.5775)</td>
</tr>
<tr>
<td>KCl</td>
<td>O(1)-O(1)-Zn 35.5263 (35.6529)</td>
<td>O(1)-O(1)-Zn 35.5263 (35.6529)</td>
</tr>
<tr>
<td>Cl(1)-K(1) 3.14620 (3.14395)</td>
<td>Cl(1)-K(1)-Cl(2) 90.0000 (90.0000)</td>
<td></td>
</tr>
<tr>
<td>KCl</td>
<td>Cl(2)-K(1) 3.14620 (3.14395)</td>
<td>K(1)-Cl(2)-K(3) 90.0000 (90.0000)</td>
</tr>
</tbody>
</table>

*calculated from refined cif file (calculated from original cif files)
3.2- Anthropometric measures

The results are represented in fig. 3; indicated a substantial reduction in waist circumference and BMI of obese rats treated with 5 or 10 mg/Kg ZnO-NPs compared to the obese group in all time intervals of the experiment. BMI value in obese rats given 10 mg/Kg ZnO-NPs was significantly less than that of 5 mg/Kg after 6 weeks of treatment. Nevertheless, there has been no substantial change observed in other time intervals. The body gain percentages at six-week post-treatment relative to initial values of control, obese and ZnO-NPs (5 or 10 mg/Kg) were 84%, 191%, 150%, and 140%, respectively.

3.3- Plasma adipocyte hormones

The obese rats exhibited a momentous reduction in adiponectin level and a substantial upsurge in leptin level (Fig. 4). The treatment of obese rats with ZnO-NPs (5 or 10 mg/Kg) modulated these effects.

3.4- Insulin resistance parameters

The treatment of obese rats with ZnO-NPs at dose level of 5 or 10 mg/Kg alleviated the increased plasma insulin or glucose concentration and insulin resistance index (Fig. 4) significantly. Insulin level of high dose of ZnO-NPs is significantly lower than that of low dose, while there is no significant difference between doses of ZnO-NPs on glucose level or IR.
3.5- Plasma lipid profile
The administration of ZnO-NPs (5 or 10 mg/Kg) to obese rats significantly reduced the elevation of cholesterol, triglycerides and LDL concentrations (Table 4). Also, ZnO-NPs (5 or 10 mg/Kg) given to obese rats preserved HDL levels. The results of high dose of ZnO-NPs were more pronounced than that of low dose.

3.6- Liver function tests
The remediation with low or high doses of ZnO-NPs significantly reduced obesity motivated a significant increase in AST, ALT and GGT levels (Table 5).

Table 4 Effect of ZnO-NPs on plasma lipid profile

<table>
<thead>
<tr>
<th>Groups</th>
<th>Total cholesterol</th>
<th>Triglycerides</th>
<th>HDL</th>
<th>LDL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>90.63±2.76</td>
<td>66.88±1.66</td>
<td>37.57±2.28</td>
<td>21.88±1.27</td>
</tr>
<tr>
<td>Obese</td>
<td>197.60±4.97*</td>
<td>231.50±13.63*</td>
<td>7.00±0.46*</td>
<td>87.38±1.90*</td>
</tr>
</tbody>
</table>

Fig. 3. Effect of ZnO-NPs on anthropometric measures of obese rats. Each value represents the mean of 8 animals ±SE. Statistical analysis was performed using one-way ANOVA followed by Tukey-Kramer multiple comparisons test. (* vs control group, @ vs obese group and # vs ZnO-NPs 5mg/kg) at p<0.05. O: Obese.

Fig. 4. Effect of ZnO-NPs on plasma adipocyte hormones and insulin resistance in obese rats. Each bar represents the mean of 8 animals ± SE. Statistical analysis was performed using one-way ANOVA followed by Tukey-Kramer multiple comparisons test. (* vs control group, @ vs obese
OXIDE NANOPARTICLES CHARACTERIZATION AND THERAPEUTIC EVALUATION...............

Table 5 Effect of ZnO-NPs on Liver function of obese rats

<table>
<thead>
<tr>
<th>Groups</th>
<th>ALT (U/L)</th>
<th>AST (U/L)</th>
<th>GGT (U/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>29.13±1.46</td>
<td>54.13±2.53</td>
<td>2.53±0.58</td>
</tr>
<tr>
<td>Obese</td>
<td>35.88±0.93*</td>
<td>112.90±2.77*</td>
<td>2.77±1.52*</td>
</tr>
<tr>
<td>O+ZnO-NPs 5mg/Kg</td>
<td>34.75±1.28*</td>
<td>102.30±4.58*</td>
<td>4.58±0.44#</td>
</tr>
<tr>
<td>O+ZnO-NPs 10mg/Kg</td>
<td>36.25±1.41*</td>
<td>88.63±6.61*</td>
<td>6.61±0.30#</td>
</tr>
</tbody>
</table>

* Each value represents the mean of 8 animals ± SE. Statistical analysis was performed using one-way ANOVA followed by Tukey-Kramer multiple comparisons test. (* vs control group, @ vs obese group and # vs ZnO-NPs 5mg/kg) at p<0.05. O: Obese.

3.7- Hepatic oxidative stress and energy parameters

As presented in table 6, the obese rats manifested a significant elevation in the concentration of hepatic MDA, NO, GSSG, 8OHdG, and AMP, on the other hand, hepatic content of GSH, carnitine, and ATP decreased significantly. Injection of obese rats with ZnO-NPs modified the previous parameters. The effect of high dose of ZnO-NPs on GSH, carnitine and ATP is significantly more noticeable than low dose.

3.8- Plasma inflammatory markers

The obese rats administered (IP) ZnO-NPs had markedly lower IL6, TNF-α, and CRP levels than obese rats (Fig. 5). On the other hand, ZnO-NPs injected into obese rats inhibited noticeably the decrease of IL2 level. There is no significant difference between low and high doses of ZnO-NPs in inflammatory markers except CRP that appear significantly low in high dose as compared to low dose. The correlation results (Figs 6,7) revealed that there was a positive correlation between BMI and insulin, CRP, TNF-α, IL6, or IR. On the other hand, a negative correlation of BMI with both adiponectin and IL2 was recorded.

![Fig. 5. Effect of ZnO-NPs on plasma inflammatory markers in obese rats. Each bar represents the mean of 8 animals ± SE. Statistical analysis was performed using one-way ANOVA followed by Tukey-Kramer multiple comparisons test. (* vs control group, @ vs obese group and # vs ZnO-NP 5mg/kg group) at p<0.05. O: Obese; ZnONP: Zinc oxide nanoparticleObese; ZnONP: Zinc oxide nanoparticle.](image-url)
3.9- Histopathological and immunohistochemical examinations
 Examination of liver sections of normal control rats revealed normal histological structure without any obvious changes (Fig. 8 a). While, liver examination of obese rats indicated diffuse hepatic steatosis (Fig. 8 b) predominantly of macro-vesicular type at which the hepatic cells showed marked swelling with presence of one or more large fat vacuoles that pushing the nucleus to one side presenting the shape of signet ring (Fig. 8c). Micro-vesicular steatosis was also notice in a scattered manner. Some hepatocytes appeared ruptured with the release of their fat.
contents (ballooning); others, appeared necrotic or apoptotic or appeared bi-nucleated with activated Kupffer cells. Examination of liver sections of the treated groups revealed a dose-related improvement in the hepatic parenchyma cells, on administration of ZnO-NPs at low dose, the hepatic cells showed moderate degree of vacuolar degeneration (Fig. 8d) with scattered necrotic cells as well as few apoptotic cells. While the treatment with ZnO-NPs at the high dose revealed marked retraction of the hepatic steatosis with the scattered appearance of hepatocellular vacuolar degeneration and necrosis (Fig. 8e).

In obese rats, the severity of macro-vesicular steatosis ranged from mild (involvement of one to two third of hepatocytes) to serious (involvement of over than two-thirds of hepatocytes). While in ZnO-NPs treated groups, the criteria of hepatic steatosis were significantly decreased as presented in Fig. 8f. Neither inflammatory foci nor fibrosis was observed in any of the examined groups.

The content of “NFκB-p65” within the hepatocytes of various groups is presented in Fig. 9, which showed marked intense diffuse immune-expression of “NFκB-p65” in the obese group, compared to the control and the treated groups. The latter groups (ZnO-NPs administrated rats) showed a dose-related significant decreased contents of “NFκB-p65” in hepatocytes as noted by image processing software.

![Photomicrographs of liver sections stained with H&E.](image)

Fig. 8. Photomicrographs of liver sections stained with H&E; (a) Control rat showing normal histological structure of central vein (CV) and hepatic cells (HCs), (b and c) Obese rat showing diffuse hepatic steatosis particularly of macrovesicular type (b), swollen hepatocytes with presence of one or more large fat vacuoles which pushed the nucleus to one side (arrow), few necrotic cells (dashed arrow) and few ballooned cells (short arrow) (c). (d) ZnO-NPs (low dose) treated rat showing moderate degree of hepatocellular vacuolar degeneration. (e) ZnO-NPs (high dose) treated rat showing scattered hepatocellular vacuolar degeneration and necrosis. (f and g) Numerical scoring of hepatic steatosis in various experimental groups. Each bar represents the mean of 7-11 animals ± SE. Statistical analysis was performed using Kruskal-Wallis test followed by Tukey-Kramer multiple comparisons test. (* vs control group, @ vs obese group and # vs Nano Zn Low group) at p<0.05.

4- Discussion

The well-defined sharp peaks in Fig. 1-a indicate that the nanoparticles are well crystallized. The resulted XRD pattern of ZnO and KCl was matched by XRD reference codes 96-230-0451 and 96-900-3113, respectively. The lower intensity of KCl peaks is due to its presence in a lesser amount. These codes were the starting models for the refinement. Debye-Scherrer Method was used in the determination of crystallite sizes. The FWHM (full-width half maximum) of the diffracted peaks were used to calculate the crystallite sizes. FWHM at a lower angle is more meaningful for crystallite size calculation; therefore, the crystallite size of the ZnO was calculated using the high-intensity peak (101) at 2θ value 36.35° and peak (200) at 2θ value 28.49° were used for KCl. Fig. 1-b, -d show...
the refinement plots and crystal formation of the sample, respectively.

The energy separation between valence states peaked of Zn (Zn-2p_{3/2} and Zn-2p_{1/2}) was found to be 22.96 eV with Zn-2p_{3/2} attributed to Zn^{2+} ions bounded in the hexagonal wurtzite structure. The O-1s peak found at 529.56 eV can be assigned to carboxyl or hydroxide group while that at 531.29 eV may be due to the existence of O^{2-} ions in the ZnO lattice or the presence of chemisorbed oxygen. The C-1s XPS spectrum shows characteristic peaks located around 284-288 eV which can be attributed to CO/CO_{2} at 289.44 eV assigned to carboxylate carbon. The Cl-2p XPS spectrum shows only one peak at 198.79 eV which can be attributed to the presence of KCl which is further proved by the peak at 292.85 eV in the K-2p XPS spectrum that was also assigned to K-2p_{3/2} in KCl. The later spectrum showed anther peaks at 295.61 eV assigned to K-2p_{1/2} with an energy separation of 2.76.

Zinc has pivotal roles in energy production, appetite goodness and adipokine control (Risk factors related to obesity). It also affects the leptin, insulin and adiponectin hormones, which regulate adiposity and fat mass. In our research, the treatment of obese rats with ZnO-NPs significantly lowered BMI, waist circumference and body weight gain. The high BMI is connected to the development of obesity since it is parallel to the increase in body fat regarding with

Fig. 9. Photomicrographs of NF-κβ p65-immune-stained liver sections; (a) Negative expression in control group, (b) An intense diffuse expression in obese group, (c and d) Significant dose related decreased expression in ZnO-NPs treated groups, (e) Image analysis of the optical density of the positive brown color. Values are expressed as mean ± SE. Data were analyzed by using one-way ANOVA followed by Tukey post-hoc test.
The improvement of anthropometric measurements or body weight gain by ZnO-NPs may be attributed to a significant decrease in leptin level or a restoration of adiponectin concentration. It was concluded that obese humans are characterized by high leptin level and leptin resistance. Leptin decreases food intake and increases energy consumption by acting on hypothalamic factors. The treatment of mice fed a high fat/sucrose diet with adiponectin resulted in weight reduction and an increased fatty acid oxidation by muscle. It was reported that body weight control needs decreasing energy intake, and increasing energy-wasting.

A significant positive correlation has been recorded between BMI and oxidative stress biomarkers. It appears that ZnO-NPs control BMI of obese rats via reduction of oxidative stress biomarkers, malondialdehyde, GSSG, NO and 8OHdG levels. Moreover, ZnO-NPs injected to obese rats enhanced hepatic GSH and carnitine levels with antioxidant activities. ZnO-NPs displayed antioxidant and anti-inflammatory properties. The possible contributors to oxidative stress in obesity include hyperglycemia, elevated lipid levels, chronic inflammation, hyperleptinemia and hyperinsulinemia. It is probably that ZnO-NPs decreases oxidative stress in obese rat directly via their antioxidant properties or indirectly through controlling hyperglycemia, dyslipidemia, hyperleptinemia and inflammation.

The present study demonstrated a significant increase in inflammatory markers, TNF-α, IL6, CRP, and NF-κB due to obesity, while ZnO-NPs treatment lowered these markers. Activation of NF-κB stimulates proinflammatory cytokines production and oxidative stress. The effect of ZnO-NPs on inflammatory markers can be attributed to its effect on leptin level that encourages production of inflammatory cytokines. TNFα is a proinflammatory cytokine suggests a link between obesity, inflammation and T2DM. TNF-α contributes in insulin insensitivity by inhibiting insulin-stimulated tyrosine phosphorylation of the insulin receptor, therefore increasing insulin sensitivity. The blockade of TNF-α signaling might be useful for T2DM and insulin sensitivity. Inflammatory cytokines are linked metabolic and liver disorders, and hence causes insulin resistance and hepatic fat accumulation. Zinc plays an intrinsic role in the prevention of metabolic syndrome, including insulin resistance, dyslipidemia, and hyperglycemia, through the restraint of proinflammatory cytokine expression, which lowers ROS production, protecting against oxidative stress damage.

Obesity is a principal causative factor in the development of metabolic syndrome. Insulin resistance, poor glucose metabolism, and, finally, the development of Type 2 Diabetes Mellitus are all linked to obesity, oxidative stress and fatty liver. ZnO-NPs can serve as a new therapeutic agent to preserve the physiological homeostasis during obesity and its associated metabolic abnormalities. Various molecular mechanisms are engaged in the regulation of blood glucose levels following Zinc feeding. Zinc modulated peripheral insulin sensitivity via regulation of protein tyrosine phosphatase, an initiator of the phosphorylation state of the insulin receptor. It appears that ZnO-NPs decreased blood glucose of obese rats via preserving IL2 level, since the exogenous IL-2 treatment can protect mice from diabetes development. Here, ZnO-NPs showed therapeutic effects toward insulin resistance, dyslipidemia and fatty liver observed in obese rats probably via its enhancement effect on adiponectin activity or lowering oxidative stress. Some studies proved that adiponectin minimized obesity associated metabolic dysfunction. Adiponectin has been demonstrated to improve insulin activity and decrease hyperglycemia in diabetic rats. Moreover, adiponectin increases fatty acid oxidation in muscle and reduces free fatty acids and triglycerides. Adiponectin displayed hepatoprotective effect, as it improved the viability of hepatic cells and insulin sensitivity or lessened liver inflammation and fibrosis. Low blood adiponectin level was observed in patients with non-alcoholic steatohepatitis. The observed decrease of fatty liver and insulin resistance in obese rats given ZnO-NPs may be due to their controlling adipokines and cytokines. It was reported that the imbalance of adipokines/cytokines led to generation of insulin resistance, fatty liver and steatosis. It is found that TNF-α or adiponectin has essential role in regulating lipid and glucose metabolism and controlling inflammation in insulin-sensitive tissues. High TNF-α and low adiponectin are linked to NAFLD. Moreover, ZnO-NPs may improve insulin resistance in obese rats by inhibition of NF-κB activation or by decreasing CRP level since high level of CRP is linked with Insulin resistance and hyperinsulinemia. The decrease of fatty liver by ZnO-NPs can be attributed to a reduction of insulin resistance that is considered an initiator factor for steatosis. It was concluded that zinc stimulates lipophagy via peroxisome proliferator–activated receptor alpha pathway and reduces hepatic lipid deposition leading to improved fatty liver. Zinc supplementation to obese patients significantly reduced ALT, GGT and steatosis. Here, ZnO-NPs injected to obese rats lowered hepatic pathological changes. It was suggested that ZnO-NPs protect liver damage induced by thioacetamide through lowering inflammatory markers and lipid peroxidation or improving antioxidant status.
Also, ZnO-NPs prohibited the decrease in hepatic ATP observed in obese rats that may refer to its antioxidant property since reactive oxygen species lead to a disturbance in mitochondrial function. Insulin resistance and T2DM are linked to a reduction in the activity of mitochondria, which causes the formation of ectopic fat in muscle. Severe insulin resistance is linked to considerably increased levels of triglycerides in both muscle and liver in the patient with type 2 diabetes and insulin resistance. These alterations were followed by declines in mitochondria-induced oxidation and ATP production, both of which indicate a loss in mitochondrial function.

Table 6 Effect of ZnO-NPs on hepatic oxidative stress and energy parameters of obese rats

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control</th>
<th>Obese</th>
<th>O+ZnO-NPs 5mg/Kg</th>
<th>O+ZnO-NPs 10mg/Kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDA (nmol/g tissue)</td>
<td>13.84±0.57 *</td>
<td>19.22±0.79 *</td>
<td>16.87±0.67 *</td>
<td>15.98±0.59 *</td>
</tr>
<tr>
<td>GSH (µmol/g tissue)</td>
<td>3.50±0.07</td>
<td>1.40±0.02</td>
<td>1.87±0.05 *</td>
<td>2.52±0.056 **</td>
</tr>
<tr>
<td>GSSG (µmol/g tissue)</td>
<td>0.33±0.01</td>
<td>0.47±0.01</td>
<td>0.39±0.01 *</td>
<td>0.39±0.01 *</td>
</tr>
<tr>
<td>NO (µmol/g tissue)</td>
<td>14.20±0.77</td>
<td>18.66±0.44</td>
<td>17.74±0.56 *</td>
<td>17.09±0.47 *</td>
</tr>
<tr>
<td>8OHdG (pg/g tissue)</td>
<td>137.20±3.17</td>
<td>202.40±5.86</td>
<td>189.5±7.06</td>
<td>171.0±2.79 *</td>
</tr>
<tr>
<td>Car (nmol/g tissue)</td>
<td>46.02±2.09</td>
<td>4.57±0.19</td>
<td>13.01±0.81 *</td>
<td>23.58±1.42 **</td>
</tr>
<tr>
<td>ATP (µg/g tissue)</td>
<td>47.76±1.83</td>
<td>5.20±0.32</td>
<td>15.25±1.82 *</td>
<td>23.66±1.15 *</td>
</tr>
<tr>
<td>AMP (µg/g tissue)</td>
<td>10.76±0.47</td>
<td>15.37±0.68</td>
<td>14.26±0.47 *</td>
<td>12.84±0.49 *</td>
</tr>
</tbody>
</table>

Each value represents the mean of 8 animals ± SE. Statistical analysis was performed using one-way ANOVA followed by Tukey-Kramer multiple comparisons test. (vs control group, @ vs obese group and # vs ZnO-NPs 5mg/kg) at p<0.05, O: Obese, Car: Carnitine.

5- Conclusions

The treatment of obese rats with ZnO-NPs showed efficient therapeutic effect in alleviation symptoms of obesity and its complications as insulin resistance, type 2 diabetes and fatty liver probably by decreasing oxidative stress, lipids and inflammatory markers or improving antioxidant defense system.

6- Conflicts of interest

There are no conflicts to declare.

7- Formatting of funding sources

This work is financially supported by National Research Centre, Cairo, Egypt (Project No 12060157)

8- References

[8] Nagajothy, P. C.; Cha, S. J.; Yang, I. J.; Sreekanth, T. V. M.; Kim, K. J.; Shin, H. M. Antioxidant and Anti-Inflammatory Activities of

Egypt. J. Chem. 65, No. 9 (2022)

[29] Hashemipour, M.; Kelishadi, R.; Shapouri, J.; Sarrafzadeh, N.; Amini, M.; Tavakoli, N.; Movahedian-Attar, A.; Mirmoghhtadee, P.; Poursafa, P. Effect of Zinc Supplementation on...

