Publications

Export 43 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R [S] T U V W X Y Z   [Show ALL]
S
Said, A. H., E. El-Kattan, M. S. Abdel-Hakeem, and H. A. El-Khayat, "In utero MRI diagnosis of fetal malformations in oligohydramnios pregnancies", EJRNM, vol. 47, issue 4, pp. 1733-1742, 2016. oligo_ejrnm_2016.pdf
Saleem, S. N., M. S. Zaki, N. A. Soliman, and M. Momtaz, "Prenatal Magnetic Resonance Imaging Diagnosis of Molar Tooth Sign at 17 to 18 Weeks of Gestation in Two Fetuses at Risk for Joubert Syndrome and Related Cerebellar Disorders", Neuropediatrics, vol. 42, no. 1: Thieme, pp. 35–38, 2011. Abstract
n/a
Saleem, S. N., and Z. Hawass, "Variability in Brain Treatment During Mummification of Royal Egyptians Dated to the 18th–20th Dynasties: MDCT Findings Correlated With the Archaeologic Literature", American Journal of Roentgenology, vol. 200, issue 4, pp. W336-W344, 2013. Abstract

OBJECTIVE. The objective of our study was to use MDCT to study brain treatment and removal (excerebration) as part of mummification of royal Egyptian mummies dated to the 18th to early 20th Dynasties and to correlate the imaging findings with the archaeologic literature.

MATERIALS AND METHODS. As part of an MDCT study of the Royal Ancient Egyptian Mummies Project, we analyzed CT images of the heads of 12 mummies dated to circa 1493–1156 BC (18th to early 20th Dynasties). We reconstructed and analyzed CT images for the presence of cranial defects, brain remnants, intracranial embalming materials, and nasal packs. We compared the CT findings of mummies dated to the 18th Dynasty with those dated to the 19th to early 20th Dynasties.

RESULTS. The Akhenaten mummy was excluded because of extensive postmortem skull fractures. CT showed that no brain treatment was offered to three mummies (Thutmose I, II, and III) who dated to the early 18th Dynasty and was offered to the eight mummies who dated later. The route of excerebration was transnasal in eight mummies; an additional suspected route was via a parietal defect. CT showed variable appearances of the intracranial contents. There were larger volumes of cranial packs and more variability in the appearances of the cranial packs in the royal mummies dated to the 19th to 20th Dynasties than in those dated to the 18th Dynasty.

CONCLUSION. MDCT shows variations in brain treatment during mummification of royal Egyptian mummies (18th–20th Dynasties). This study sets a template for future CT studies of the heads of ancient Egyptian mummies and focuses on the key elements of cranial mummification in this ancient era.

Saleem, S. N., "A radiological reassessment of the ‘pregnant mummy’: A comment to Ejsmond et al., 2021", Journal of archaeological science, vol. 137, pp. 105508, 2022.
Saleem, S. N., "Feasibility of MRI of the fetal heart with balanced steady-state free precession sequence along fetal body and cardiac planes", American Journal of Roentgenology, vol. 191, no. 4: Am Roentgen Ray Soc, pp. 1208–1215, 2008. Abstract
n/a
Saleem, S. N., Y. Y. Sabri, and A. S. Saeed, "Radiology Education in the Faculty of Medicine at Cairo University", Radiology Education: The Scholarship of Teaching and Learning: Springer, pp. 283, 2008. Abstract
n/a
Saleem, S. N., and Z. Hawass, "Digital Unwrapping of the Mummy of King Amenhotep I (1525-1504 BC) Using CT.", Frontiers in medicine, vol. 8, pp. 778498, 2021. Abstract

The mummy of King Amenhotep I (18th Dynasty c.1525-1504 BC) was reburied by the 21st Dynasty priests at Deir el-Bahari Royal Cache. In 1881 the mummy was found fully wrapped and was one of few royal mummies that have not been unwrapped in modern times. We hypothesized that non-invasive digital unwrapping using CT would provide insights on the physical appearance, health, cause of death, and mummification style of the mummy of King Amenhotep I. We examined the mummy with CT and generated two- and three-dimensional images for the head mask, bandages, and the virtually unwrapped mummy. CT enabled the visualization of the face of Amenhotep I who died around the age of 35 years. The teeth had minimal attrition. There was no CT evidence of pathological changes or cause of death. The body has been eviscerated a vertical left flank incision. The heart is seen in the left hemithorax with an overlying amulet. The brain has not been removed. The mummy has 30 amulets/jewelry pieces including a beaded metallic (likely gold) girdle. The mummy suffered from multiple postmortem injuries likely inflicted by tomb robbers that have been likely treated by 21st Dynasty embalmers. These included fixing the detached head and neck to the body with a resin-treated linen band; covering a defect in the anterior abdominal wall with a band and placing two amulets beneath; placement of the detached left upper limb beside the body and wrapping it to the body. The transversely oriented right forearm is individually wrapped, likely representing the original 18th Dynasty mummification and considered the first known New Kingdom mummy with crossed arms at the chest. The head mask is made of cartonnage and has inlaid stone eyes. The digital unwrapping of the mummy of Amenhotep I using CT sets a unique opportunity to reveal the physical features of the King non-invasively, understand the mummification style early in the 18th Dynasty, and the reburial intervention style by 21st Dynasty embalmers. This study may make us gain confidence in the goodwill of the reburial project of the Royal mummies by the 21st dynasty priests.

Saleem, S. N., "MR Imaging Diagnosis of Uterovaginal Anomalies: Current State of the Art1", Radiographics, vol. 23, no. 5: Radiological Society of North America, pp. e13–e13, 2003. Abstract
n/a
Saleem, S. N., and Z. Hawass, "Computed Tomography Study of the Mummy of King Seqenenre Taa II: New Insights Into His Violent Death.", Frontiers in medicine, vol. 8, pp. 637527, 2021. Abstractseqenenre_frontiers_2021.pdf

Seqenenre-Taa-II, The Brave, (c.1558-1553 BC) ruled Southern Egypt during the occupation of Egypt by the Hyksos. The mummy was physically examined and X-rayed in the 1960s, which showed severe head wounds that have prompted various theories about the circumstances of his death. We postulated that Computed Tomography (CT) study of Seqenenre-Taa-II's mummy would give insights into the circumstances of his death. We examined Seqenenre's mummy using CT and compared the findings with the archaeological literature as well as with five Asian weapons found in Tell-el-Dabaa. CT findings indicate that Seqenenre died in his forties. The mummies deformed hands suggest that the King was likely imprisoned with his hands tied. CT images provided detailed analysis of Seqenenre's previously reported injuries to the forehead, right supra-orbital, nose-right orbit, left chick, and skull base. This study revealed additional craniofacial fractures in the right lateral side of the skull that had been concealed by the embalmers beneath layers of material. Analysis of the morphology of the injuries enabled a better understanding of the mechanism of trauma, possible number of the attackers, and their relative position to the King. The size and shape of the fractures correlated well with the studied Hyksos weapons. The lethal attack was aimed at the King's face, likely in an attempt to disgrace him. Mummification of Seqenenre's body was limited to evisceration without brain removal. The desiccated brain is shifted to the left side of the skull. This may indicate that the King's dead body stayed on its left side for some time-long enough for decomposition start before the mummification began. This suggests that the King likely died at a location distant from the funeral place, possibly on a battlefield. The embalmers attempted to conceal the King's injuries; the methods used suggest that the mummification took place in a royal mummification workshop rather than in a poorly equipped location. CT findings of Seqenenre's mummy helped us to better understand the circumstances of his violent death. His death motivated his successors to continue the fight to unify Egypt and start The New Kingdom.

Saleem, S. N., and M. S. Zaki, "Role of MR imaging in prenatal diagnosis of pregnancies at risk for Joubert syndrome and related cerebellar disorders", American Journal of Neuroradiology, vol. 31, no. 3: Am Soc Neuroradiology, pp. 424–429, 2010. Abstract
n/a
Saleem, S. N., and Z. Hawass, "Computed tomography study of the feet of mummy of Ramesses III: New insights on the Harem Conspiracy", J Comput Assist Tomogr , vol. Sept , issue 41, pp. 15-17, 2017.
Saleem, S. N., "MR Imaging Diagnosis of Uterovaginal Anomalies: Current State of the Art1", Radiographics, vol. 23, no. 5: Radiological Society of North America, pp. e13–e13, 2003. Abstract
n/a
Saleem, S. N., and Z. Hawass, "Ankylosing spondylitis or diffuse idiopathic skeletal hyperostosis (DISH) in Royal Egyptian mummies of 18th-20th Dynasties? CT and archaeology studies", Arthritis and Rheumatology , vol. 66, issue 12, pp. 3311-3316, 2014.
Saleem, S. N., "Fetal Magnetic Resonance Imaging (MRI): A Tool for a Better Understanding of Normal and Abnormal Brain Development.", Journal of Child Neurology , issue 13(7), pp. 889-907 , 2013. Abstractsaleem_journal_of_child_neurology_2013.pdf

Knowledge of the anatomy of the developing fetal brain is essential to detect abnormalities and understand their pathogenesis. Capability of magnetic resonance imaging (MRI) to visualize the brain in utero and to differentiate between its various tissues makes fetal MRI a potential diagnostic and research tool for the developing brain. This article provides an approach to understand the normal and abnormal brain development through schematic interpretation of fetal brain MR images. MRI is a potential screening tool in the second trimester of pregnancies in fetuses at risk for brain anomalies and helps in describing new brain syndromes with in utero presentation. Accurate interpretation of fetal MRI can provide valuable information that helps genetic counseling, facilitates management decisions, and guides therapy. Fetal MRI can help in better understanding the pathogenesis of fetal brain malformations and can support research that could lead to disease-specific interventions.

Saleem, S. N., and M. S. Zaki, "Role of MR imaging in prenatal diagnosis of pregnancies at risk for Joubert syndrome and related cerebellar disorders", American Journal of Neuroradiology, vol. 31, no. 3: Am Soc Neuroradiology, pp. 424–429, 2010. Abstract
n/a
Saleem, S., R. Bianucci, F. M. Galassi, and A. G. Nerlich, "Editorial: Ancient diseases and medical care: Paleopathological insights.", Frontiers in medicine, vol. 10, pp. 1140974, 2023.
Saleem, S. N., A. H. M. Said, and D. H. Lee, "Lesions of the Hypothalamus: MR Imaging Diagnostic Features1", Radiographics, vol. 27, no. 4: Radiological Society of North America, pp. 1087–1108, 2007. Abstract
n/a
Saleem, S. N., Sabah Abdel Razek Sedik, and M. El-Halwagy, "A Child Mummy in a Pot: Computed Tomography Study and Insights on Child Burials in Ancient Egypt", Guardian Of Ancient Egypt: Studies in honor of Zahi Hawass. , Prague, Charles University , Faculty of Arts, 2020. child_in_a_pot_zahi_festshrift_2020.pdf
Saleem, S. N., A. H. Said, M. Abdel-Raouf, E. A. El-Kattan, M. S. Zaki, N. Madkour, and M. Shokry, "Fetal MRI in the evaluation of fetuses referred for sonographically suspected neural tube defects (NTDs): impact on diagnosis and management decision", Neuroradiology, vol. 51, no. 11: Springer, pp. 761–772, 2009. Abstract
n/a
Saleem, S. N., A. H. M. Said, and D. H. Lee, "Lesions of the Hypothalamus: MR Imaging Diagnostic Features1", Radiographics, vol. 27, no. 4: Radiological Society of North America, pp. 1087–1108, 2007. Abstract
n/a
Saleem, S. N., and Z. Hawass, "Subcutaneous packing in Royal Egyptian mummies dated from 18th to 20th Dynasties", J Comput Assist Tomogr , vol. 39, issue 3, pp. 301-306, 2015.
Saleem, S. N., and Y. Y. Sabri, "Measuring Competence of Radiology Education Programs and Residents: The Egyptian Experience", Radiology Education: Springer Berlin Heidelberg, pp. 129–141, 2012. Abstract
n/a
Saleem, S. N., "Fetal MRI: An approach to practice", Journal of Advanced Research, vol. 5, issue 5, pp. 507-523, 2014. Abstractjar_2013_article.pdf

MRI has been increasingly used for detailed visualization of the fetus in utero as well as pregnancy structures. Yet, the familiarity of radiologists and clinicians with fetal MRI is still limited. This article provides a practical approach to fetal MR imaging. Fetal MRI is an interactive scanning of the moving fetus owed to the use of fast sequences. Single-shot fast spin-echo (SSFSE) T2-weighted imaging is a standard sequence. T1-weighted sequences are primarily used to demonstrate fat, calcification and hemorrhage. Balanced steady-state freeprecession (SSFP), are beneficial in demonstrating fetal structures as the heart and vessels. Diffusion weighted imaging (DWI), MR spectroscopy (MRS), and diffusion tensor imaging (DTI) have potential applications in fetal imaging. Knowing the developing fetal MR anatomy is essential to detect abnormalities. MR evaluation of the developing fetal brain should include recognition of the multilayered-appearance of the cerebral parenchyma, knowledge of the timing of sulci appearance, myelination and changes in ventricular size. With advanced gestation, fetal organs as lungs and kidneys show significant changes in volume and T2-signal. Through a systematic approach, the normal anatomy of the developing fetus is shown to contrast with a wide spectrum of fetal disorders. The abnormalities displayed are graded in severity from simple common lesions to more complex rare cases. Complete fetal MRI is fulfilled by careful evaluation of the placenta, umbilical cord and amniotic cavity. Accurate interpretation of fetal MRI can provide valuable information that helps prenatal counseling, facilitate management decisions, guide therapy, and support research studies.

Tourism