
Proceedings of the 11th International Workshop on Quality
in Databases (QDB’16)

Christoph Quix
Fraunhofer FIT

St. Augustin, Germany

christoph.quix@fit.
fraunhofer.de

Rihan Hai
RWTH Aachen University

Aachen, Germany

hai@dbis.rwth-
aachen.de

Hongzhi Wang
Harbin Institute of Technology

China
wangzh@hit.edu.cn

Verikat N. Gudivada
East Carolina University

Greenville, USA
gudivadav15@ecu.edu

Laure Berti
Hamad Bin Khalifa University

Qatar
lberti@qf.org.qa

Message from the Workshop Chairs
Data quality problems arise frequently when data is inte-
grated from disparate sources. In the context of Big Data
applications, data quality is becoming more important be-
cause of the unprecedented volume, large variety, and high
velocity. The challenges caused by volume and velocity of
Big Data have been addressed by many research projects
and commercial solutions and can be partially solved by
modern, scalable data management systems. However, va-
riety remains to be a daunting challenge for Big Data Inte-
gration and requires also special methods for data quality
management. Variety (or heterogeneity) exists at several
levels: at the instance level, the same entity might be de-
scribed with different attributes; at the schema level, the
data is structured with various schemas; but also at the
level of the modeling language, different data models can be
used (e.g., relational, XML, or a document-oriented JSON
representation). This might lead to data quality issues such
as consistency, understandability, or completeness. The het-
erogeneity of data sources in the Big Data Era requires new
integration approaches which can handle the large volume
and speed of the generated data as well as the variety and
quality of the data. Thus, heterogeneity and data quality are
seen as challenges for many Big Data applications. While in
some applications, a limited data quality for individual data
items does not cause serious problems when a huge amount
of data is aggregated, data quality problems in data sources
are often revealed by the integration of these sources with
other information. Data quality has been coined as ‘fitness
for use’; thus, if data is used in another context than origi-
nally planned, data quality might become an issue. Similar
observations have been also made for data warehouses which

lead to a separate research area about data warehouse qual-
ity.

The 11th International Workshop on Quality in DataBases
(QDB) continued the successful workshop series on data
quality management in database systems. This year’s work-
shop had a special focus on problems related to Big Data
Integration and Big Data Quality.

We received about 10 submissions from which four were be
accepted as regular papers. In addition, the workshop had
a very compelling keynote talk by Divesh Srivastava about
data glitches which he characterized as constraint violations
without empirical explanations. The workshop program was
completed by four invited research presentations that espe-
cially focused on the practical aspects of data quality man-
agement and introduced systems that address the problems
in Big Data Integration or Big Data Quality.

1

Workshop Chairs
Christoph Quix
Fraunhofer FIT, Germany

Rihan Hai
RWTH Aachen University, Germany

Hongzhi Wang
Harbin Institute of Technology, China

Verikat N. Gudivada
East Carolina University, USA

Laure Berti
Hamad Bin Khalifa University, Qatar

Program Committee
Helena Galhardas, Instituto Superior Tcnico, University of Lisbon and INESC-ID
Nan Tang, QCRi
Barbara Pernici, Politecnico di Milano
Cinzia Cappiello, Politecnico di Milano
Wenjie Zhang, UNSW
Felix Naumann, HPI
Melanie Herschel, Universitt Stuttgart
Christian Bizer, University of Mannheim
Divesh Srivastava, AT&T Labs Research
Eduard Dragut, Temple University
Andrea Maurino, universit degli studi di Milano - Bicocca
Mario Piattini, University of Castilla-La Mancha
Panos Vassiliadis, University of Ioannina
Weiyi Meng, Department of Computer Science, Binghamton University
Paolo Papotti, Arizona State University
Dmitri V. Kalashnikov, AT&T Labs Research
Michael Gertz, Heidelberg University
Srividya Bansal, Arizona State University
Hongwei Zhu, University of Massachusetts Lowell
Jiannan Wang, Simon Fraser University
Lukasz Golab, University of Waterloo
David Kensche, RWTH Aachen University
Erhard Rahm, University of Leipzig
Ulf Leser, Institut fr Informatik, Humboldt-Universität zu Berlin
Jolon Faichney, Griffith University
Kai-Uwe Sattler, TU Ilmenau
Tenindra Abeywickrama, Monash University
Michael Klaes, Fraunhofer Institute for Experimental Software Engineering

2

Table of Contents
Keynote Talk

Data Glitches = Constraint Violations - Empirical Explanations 4
Divesh Srivastava (AT&T Labs)

Regular Papers

DIRA: Data Integration to Return Ranked Alternatives 5
Reham I. Abdel Monem (Cairo University), Ali H. El-Bastawissy (University, Giza), Mohamed M. Elwakil (Innopolis
University)

Communicating Data Quality in On-Demand Curation 13
Poonam Kumari (University at Buffalo), Said Achmiz, Oliver Kennedy (University at Buffalo)

Data Cleaning in the Wild: Reusable Curation Idioms from a Multi-Year SQL Workload 17
Shrainik Jain (University of Washington), Bill Howe (University of Washington)

Data Quality for Semantic Interoperable Electronic Health Records 21
Shivani Batra (Jaypee Institute of Information Technology University), Shelly Sachdeva (Jaypee Institute of Information
Technology University)

Abstracts of Invited Presentations

Towards Rigorous Evaluation of Data Integration Systems - It’s All About the Tools 29
Boris Glavic (Illinois Institute of Technology)

Three Semi-Automatic Advisors for Data Exploration 30
Thibault Sellam (CWI)

Graph-based Exploration of Non-graph Datasets 31
Udayan Khurana (IBM Research)

Data Quality Management in Data Exchange Platforms An Approach for the Industrial Data Space in
Germany

32

Christoph Quix (Fraunhofer FIT)

3

Data Glitches = Constraint Violations - Empirical
Explanations

Divesh Srivastava
AT&T Labs Research

divesh@research.att.com

ABSTRACT
Data glitches are unusual observations that do not conform
to data quality expectations, be they semantic or syntac-
tic, logical or statistical. By naively applying integrity con-
straints, potentially large amounts of data could be flagged
as being violations. Ignoring or repairing significant amounts
of the data could fundamentally bias the results and con-
clusions drawn from analyses. In the context of Big Data
where large volumes and varieties of data from disparate
sources are integrated, it is likely that significant portions
of these violations are actually legitimate usable data. We
conjecture that empirical glitch explanations – concise char-
acterizations of subsets of violating data – could be used to
(a) identify legitimate data and release them back into the
pool of clean data, thereby reduce cleaning-related statisti-
cal distortion of the data; and (b) refine existing integrity
constraints and generate improved domain knowledge. We
present a few real-world case studies in support of our con-
jecture, outline scalable techniques to address the challenges
of discovering explanations, and demonstrate the utility of
the explanations in reclaiming over 99% of the violating
data.

14

DIRA: Data Integration to Return Ranked Alternatives
Reham I. Abdel Monem

Information Systems Department,
Faculty of Computers and Information,

Cairo University, Giza, Egypt

reham@fci-cu.edu.eg

Ali H. El-Bastawissy
Faculty of Computer Science, MSA

University, Giza, Egypt

alibasta@fci-cu.edu.eg

Mohamed M. Elwakil
The Software Engineering Laboratory,
Innopolis University, Innopolis, Russia

m.elwakil@innopolis.ru

ABSTRACT
Data integration (DI) is the process of collecting data needed for

answering a query from distributed and heterogeneous data

sources and providing users with a unified form of this data. Data

integration is strictly tied with data quality due to two main data

integration challenges first, providing user with high qualitative

query results second, identifying and solving values conflicts on

the same real-world objects efficiently and in the shortest time. In

our work, we focus on providing user with high qualitative query

results.

The quality of a query result can be enhanced by evaluating the

quality of the data sources and retrieving results from the

significant ones only. Data quality measures are used not only for

determining the significant data sources but also in ranking data

integration results according to user-required quality and

presenting them in a reasonable time. In this paper, we perform an

experiment that shows a mechanism to calculate and store a set of

quality measures on different granularities through new data

integration framework called data integration to return ranked

alternatives (DIRA). These quality measures are used in selecting

the most significant data sources and producing top-k query

results according to query types that we proposed. DIRA

validation using the transaction processing performance

council (TPC) benchmark version called TPC-DI will show how

our framework improves the returned query results.

1. INTRODUCTION
Data integration system (DIS) is a system where query results are

combined from different and autonomous data sources. These

query results may be found in one source or distributed among

many sources [1].

Data integration may face three types of heterogeneity:

technological heterogeneities because products are used by

different vendors, applied in different categories of information

and communication infrastructures, schema heterogeneities due to

the use of different data models and different data representations

and instance heterogeneities where the same object from different

data sources represented by different data values. In our work, we

focused on instance heterogeneities where data quality problems

become very evident and as they have big effect on the query

processing in data integration.

Such systems have different architectures but virtual integration

and data warehousing architectures are the most commonly used

ones. In this work, we use the virtual integration architecture

where many local data sources are combined together to form a

single virtual data source, data are stored in local data sources and

are accessed through global schema which is the presentation

where users send their queries to a data integration system.

Data sources quality changes frequently so it is important to store

some data sources quality measures to use them during query

planning.

In our previous work (DIRA) [2], we presented data integration

framework called Data Integration to return Ranked Alternatives

(DIRA) that uses data quality (DQ) in data integration systems to

improve their performance and query results quality. This

framework adds quality system components and data quality

assessment module to any data integration system.

In this paper, we report on an experiment on the DIRA framework

that uses the data integration benchmark TPC_DI [3].

In this paper data quality measures and the way of their

assessment are introduced in section 2. Section 3 presents the

DIRA framework. Experiments on DIRA framework using the

data integration benchmark TPC_DI [3] are presented in section 4.

Conclusion and future work are introduced in section 5.

2. DATA QUALITY MEASURES USED IN

DATA INTEGRATION
Data quality is fitness for use or the ability to meet user’s needs

[4]. There are a lot of measures to assess data quality called data

quality measures. They are classified according to many aspects

[5] and table 1 presents one of their classifications.

Table 1. Information quality measures classification for data

integration [6]

Data Integration Components IQ criteria

Data Source
Reputation, Verifiability, Availability

and Response Time.

Schema
Schema Completeness, Minimalism

and Type Consistency.

Data
Data Completeness, Data Timeliness,

Data Accuracy and Data Validity.

In DIRA, we focused on data quality measures important for user

and related to data in the integration process.

Quality measures can assess the quality of information better if we

use a combination of metrics, subjective ratings and qualitative

description of issues. We use that in DIRA assessment module.

There are different levels of granularities that data quality

measures can be calculated according to them and table 2 presents

our selected data quality measures and the granularity level for

each selected measure.

5

Table 2. Data quality measures selected by DIRA and the

granularity for each measure

Data Quality

Measures

Measures Granularities

Data Source

Level

Relation

Level

Attribute

Level

Completeness 

Validity 

Accuracy 

Timeliness 

Following sub-sections explain our selected data quality measures

definitions and the equations for their assessment:

2.1 Data completeness
Data completeness categorized into two types: Null-Completeness

and Population-Completeness. Null-Completeness represents the

extent to which data set contains missing values. Population-

Completeness represents the extent to which all needed data by

the user is available [5].

In DIRA, Fact-Completeness was introduced and is defined as an

inferred and accurate type of completeness which value is

assessed using Null-Completeness and Population-Completeness.

Completeness types assessment at attribute level will be

concluded as follows (Where �௠ (r) is attribute number m in

relation r) [7]:

 Null-Completeness assessment (ܥே௨௟௟): It is the percentage of

existing values (non-null values) to the whole number of

values in the universal relation.ܥே௨௟௟ሺ�௠ ሺrሻሻ N୳୫ୠୣ୰ ୭୤ ୬୭୬−୬୳୪୪ ୴ୟ୪୳ୣୱ �� ሺ ୰ሻ T୭୲ୟ୪ ୬୳୫ୠୣ୰ ୭୤ ୴ୟ୪୳ୣୱ ୧୬ ୲୦ୣ ୳୬୧୴ୣ୰ୱୟ୪ ୰ୣ୪ୟ୲୧୭୬ ሺͳሻ

 Population-Completeness assessment (ܥ௉௢௣௨௟�௧�௢௡): It is the

percentage of actually presented rows in a relation r to the

number of rows in ref(r) where ref(r), is the relation of all

rows that satisfy r relational schema.ܥ௉௢௣௨௟�௧�௢௡(�௠ (r)) =
஼�௥ௗ�௡�௟�௧� ௢௙ �� ሺ ୰ሻ஼�௥ௗ�௡�௟�௧� ௢௙ ௥௘௙ሺ௥ሻ ሺʹሻ

 Fact-Completeness assessment (ܥ௙�௖௧): It is subtraction of

the number of missing values from the total number of

existing values divided by the whole number of values in

ref(r).

If reference relation isn’t available, fact-completeness will

equal null-completeness. �݊ܥே௨௟௟ሺ�௠ (r)) =
N୳୫ୠୣ୰ ୭୤ ୬୳୪୪ ୴ୟ୪୳ୣୱ ୤୭୰ �� ሺ௥ሻ஼�௥ௗ�௡�௟�௧� ௢௙ ௥௘௙ሺ௥ሻ ே௨௟௟ ሺ�௠ (r)) (4)ܥ݊� - (௉௢௣௨௟�௧�௢௡ ሺ�௠ (r)ܥ = (௙�௖௧ሺ�௠ (r)ܥ (3)

 Data completeness scaled aggregate value (்ܥ�௣௘) for

attributes required by user in query

Scaled Total (்ܥ�௣௘ሻ =
∑ ஼����ሺ��ሺ௥ሻ��=1 ሻெ (5)

Where M represents the number of attributes that required by

the user in the query

2.2 Data validity
Data validity is the extent to which attribute value within specified

domain [5].

Validity assessment at attribute level concluded as follows (Where �௠ (r) is attribute number m in relation r) [7]:

 Data validity assessment (l): It is the percentage between of

valid values and the whole number of values in the universal

relation.�ሺ�௠ ሺrሻሻ = N୳୫ୠୣ୰ ୭୤ ୴ୟ୪୧ୢ ୴ୟ୪୳ୣୱ �� ሺ୰ሻT୭୲ୟ୪ ୬୳୫ୠୣ୰ ୭୤ ୴ୟ୪୳ୣୱ ୧୬ ୲୦ୣ ୳୬୧୴ୣ୰ୱୟ୪ ୰ୣ୪ୟ୲୧୭୬(6)

 Data validity scaled aggregate value (L) for attributes

required by user in query

Scaled Total (�ሻ =
∑ ௟ሺ����=1 ሺ௥ሻሻெ (7)

Where M represents the number of attributes that required by the

user in the query.

2.3 Data accuracy
Data accuracy is divided into two types: semantic accuracy and (0

or 1) accuracy. Semantic accuracy represents the gap between

recorded value v and correct value v'. (0 or 1) accuracy represents

the ratio between data values considered accurate (they don't

conflict with real-world values) and the total number of values in

the universal relation. (0 or 1) accuracy was the type used in our

work [5].

Since a reference relation is almost always missing, costly and

time consuming, we compare the value of each attribute to its

domain of allowed values (it will consider as validity) but if

reference relation is available and user not care about cost or

time; accuracy will be calculated and can be improved by

complaints and domain experts’ feedback that identify erred data

and a correction for them.

Accuracy assessment at attribute level will be concluded as

follows (Where �௠ (r) is attribute number m in relation r) [7]:

Data accuracy assessment (a): It is the percentage of accurate

values and the whole number of values in the universal relation. �ሺ�௠ ሺrሻሻ = N୳୫ୠୣ୰ ୭୤ ୟୡୡ୳୰ୟ୲ୣ ୴ୟ୪୳ୣୱ �� ሺ୰ሻT୭୲ୟ୪ ୬୳୫ୠୣ୰ ୭୤ ୴ୟ୪୳ୣୱ ୧୬ ୲୦ୣ ୳୬୧୴ୣ୰ୱୟ୪ ୰ୣ୪ୟ୲୧୭୬ ሺ8ሻ
 Data Accuracy scaled aggregate value (A) for attributes

required by user in query

Scaled Total (�ሻ =
∑ �ሺ����=1 ሺ௥ሻሻெ (9)

Where M represents the number of attributes that required

by user in query

2.4 Data timeliness
Data timeliness is the extent to which data is up-to-date [5].In

DIRA, we judge how far the data is modern using insertion time

and volatility that we store in DIRA metadata structure.

Timeliness assessment at relation level is concluded as follows

[7]:

Data timeliness assessment (t): Timeliness for relation r can be

calculated using currency and volatility variables that will be

presented in the following equations 10 and 11.

6

Currency = Age + (DeliveryTime – InputTime) (10)

Where:

Currency: It reflects how far the data is modern.[8]

Age: It reflects how old the data is when it is delivered.

DeliveryTime: Data delivery time to user.

InputTime: The data obtaining time.

Timeliness (t (r)) = max {Ͳ,ͳ − ஼௨௥௥௘௡௖��௢௟�௧�௟�௧�} (11)

Where:

Volatility: The data validity lifetime.

In our work, we suppose that DeliveryTime = InputTime (no time

between obtaining data and delivering it to the user) so Currency

= Age

 Data timeliness aggregate value (T) for attributes required

by user in queryܶ݋���ሺܶሻ = Maximum (t (r)) (12)

3. DATA INTEGRATION TO RETURN

RANKED ALTERNATIVES (DIRA)

FRAMEWORK
DIRA framework consists of data quality assessment module and

data quality system components.

3.1 DIRA data quality assessment module
There are many components to assess data quality in DIRA

assessment module; these components are [9]:

 Assessment metrics. They are procedures for assessing data

quality measures assessment scores using a scoring

function.

 Aggregation metrics. They are procedures for assessing

aggregated score. This aggregate score is calculated from

individual assessment scores using aggregation functions

like sum, count, and average functions.

 Data quality measures. They are metadata for describing

how data is suitable for a specific task.

 Scoring functions. They are the way for assessing data

quality measures. They may be simple comparisons, set

function, aggregation function and complex statistical

function.

3.2 DIRA quality system components
Quality system components consist of data quality acquisition and

user input, these components are added to integration systems to

enhance query results.

3.2.1 Data quality acquisition
Data quality acquisition stores data sources columns, tables and

data quality assessment module results in the metadata store.

Hierarchical quality framework [10] that is introduced in DIRA is

used in building DIRA metadata store entities presented in figure

1.

Domain

PK DomainId

DomainName

DataSource

PK DataSourceId

DataSourceName

FK1 DomainId

Table

PK TableId

TableName

InsertionDate

Volatility

FK1 DataSourceId

Column

PK ColumnId

ColumnName

FK1 TableId

QueriedDataSource

PK QueriedDataSourceId

FK1 GSColumnId

FK1 ColumnId

FK2 DataSourceId

GlobalSchemaColumn

PK GSColumnId

GSColumnName

Detector

CorrelatedWith

FK1 GSTableId

GlobalSchemaTable

PK GSTableId

GSTableName

GlobalSchemaMapping

PK,FK1 ColumnId

PK,FK2 GSColumnId

ColumnFactCompleteness

ColumnValidity

ColumnAccuracy

ColumnTimeliness

QueriedDataSourceAssessmentMetric

PK QueriedDSAssessmentMetricId

QueriedDSAssessmentMetricName

QueriedDSAssessmentMetricDefinition

QueriedDSAssessmentMetricState

QueriedDSAssessmentMetricTemporary

QueriedDSAssessmentMetricHistory

InformationSupplier

QueriedDSFactCompleteness

QueriedDSValidity

QueriedDSAccuracy

QueriedDSTimeliness

FK1 QueriedDataSourceId

AlternativeAggregatedMetric

PK AlternativeAggregatedMetricId

AlternativeAggregatedMetricName

AlternativeAggregatedMetricDefinition

AlternativeAggregatedMetricState

AlternativeAggregatedMetricTemporary

AlternativeAggregatedMetricHistory

InformationSupplier

AlternativeFactCompleteness

AlternativeValidity

AlternativeAccuracy

AlternativeTimeliness

QueriedDataSourceAssessmentMetric-AlternativeAggregatedMetric

PK,FK1 QueriedDSAssessmentMetricId

PK,FK2 AlternativeAggregatedMetricId

Figure 1. DIRA metadata structure [2]

3.2.2 User input
Qualified results can be returned to the user using some quality

measures in a user query. SQL can include some quality measures

as we present in the following query [1]:

3.3 DIRA workflow components
DIRA consists of some basic components that can clarify how

DIRA works. These components are

 Data quality assessment metrics of data sources attributes

(columns). They are responsible for calculating the chosen

data quality measures scores for all data sources attributes

(columns) with its associated columns in the global schema.

These scores are stored in global schema mapping entity.

 Data quality assessment metrics for queried data sources.

Queried data sources are data sources that participate in

query answering by attributes. In these assessment metrics,

the aggregate data quality score for all attributes that the

data source will participate with will be assessed for each

measure.

 Alternatives formation. Alternative is one or more queried

data source. There are two types of alternatives: qualified

alternatives and not qualified alternatives. Alternative

Select A1… Ak

From G

Where < selection condition >

With < data quality goal >

Where A1, A2, Ai are global attributes of G

7

considers qualified if it satisfies the specified quality level

in the user query and not qualified otherwise.

 In our framework, query type specifies the way of

alternatives formation. Queries devoid of any quality

constraint, combinations of all queried data sources are

formed to build alternatives and all are qualified

alternatives. Queries have one or more quality constraint,

qualified alternatives of single queried data source that

satisfies the specified quality level are built and other data

sources are pruned from forming alternatives (First

Pruning) then alternatives from more than one queried data

sources are built from combinations of all queried data

sources, alternatives that don’t satisfy the quality constraint

are pruned (Second Pruning) and the rest are qualified

alternatives.

 Alternatives aggregated metrics. They are responsible for

assessing aggregated scores of alternatives containing more

than one queried data source.

Alternative aggregated score is single representative value

for alternative queried data sources assessment scores that

assessed using aggregate function.

There are different aggregate functions to represent single

value for collection of values like average (mean), mode and

median. In DIRA, we use simple average (arithmetic mean)

aggregate function.

Simple average is aggregate function that provides accurate

description of entire data and uses every value in data so it

considers good representative for data. Following in table 3

we present what the best aggregate function is with respect to

the different types of variables.

Table 3. The best aggregate function with respect to the

different types of variables[11][12]

Type of variable The best aggregate function

Nominal Mode

Ordinal Median

Interval/Ratio Mean or median

These aggregated scores are built from queried data sources

assessment metrics according to the following equations [13].

 Alternative data fact completenessܥ஽ௌ௦ = ∑ ௤ሻொ௤=1ܵܦ௙�௖௧ሺܥ �⁄ (13)

 Alternative data validity�஽ௌ௦ = ∑ �ሺܵܦ௤ሻொ௤=1 �⁄ (14)

 Alternative data accuracy �஽ௌ௦=∑ �ሺܵܦ௤ሻொ௤=1 �⁄ (15)

 Alternative data timeliness஽ܶௌ௦=Maximum(ܶሺܵܦ௤ሻ) (16)

 Alternatives ranking according to proposed queries types. In

this component, alternatives ranking based on different types

of queries; No-measure top-k selection query, quantitative

measure-feature top-K selection query, qualitative single-

measure top-K selection query, quantitative multi-measure

top-K selection query and qualitative multi-measure top-K

selection query; These types vary in number of quality

measures in query condition (from one to four) and the kind

of quality measures value (quantitative or qualitative).

In no-measure top-k selection query, alternatives returned to

the user are ranked according to all scope measures and user

chooses the most suitable ranking for him.

In quantitative single-measure top-K selection query,

alternatives returned to user are ranked according to specified

data quality measure in user query, in qualitative single-

measure top-K selection query, DIS receives message as

input from user with quality measure score that represents

the qualitative value for quality measure in user query and

DIS returns alternatives ranked according to required data

quality measure in user query.

In quantitative multi-measure top-K selection query,

alternatives returned to user are ranked through ranking

algorithm called threshold algorithm [14] according to three

case; Case1: user's query contains data quality measures,

they are separated with (AND) and all are fulfilled, in this

case, threshold algorithm returns alternatives ranked by total

score. Case2: user's query contains data quality measures,

they are separated with (AND) and the quality level for one

or more of data quality measures isn’t compatible with

quality level for other data quality measures or isn't achieved,

in this case, user receives a message to notify him that the

quality level for query answering can't be achieved. Case3:

user's query contains data quality measures, they are

separated with (OR) and the quality level for all data

measures fulfilled or the quality level for one or more of data

quality measures isn’t compatible with the quality level for

other data quality measures or can’t be achieved, in this case,

threshold algorithm ranks alternatives with total score.

In qualitative multi-measure top-K selection query, DIS

returns alternatives ranked by threshold algorithm according

to previous three cases but after receiving the message as

input from the user with quality measures scores that

represent the qualitative values for quality measures in user’s
query.

Following in figure 2, we present DIRA workflow components

that we explained above

8

……………….DS1 DS2 DSn

Data Quality

Acquisition

Metadata

Store

Al

Data source participates

with attributes in query

answering?

No It isn’t Ƌueƌied data souƌce

Building queried data source assessment metric and check for next data source

till we reach to n checked data sources

Specified quality

constraint in user

query?

No
No-feature top-k

selection query

Yes

Single-feature top-k selection query or multi-feature top-k

selection query

First pruning: prune queried data sources under the required level

of quality in user query and from others; alternatives with one

queried data source are formed

Alternatives with more than one queried data source are formed from

all queried data sources

Second pruning: prune alternatives with more than one queried data

source under the required level of quality in user query and others are

added to qualified alternatives with one queried data source to be ranked

Alternatives ranking1

Data quality

measures

scores

assessment for

data sources

attributes

1
Ranked alternatives before

duplicate detection and

data fusion

Mediator

Duplicate

detection and

data fusion for

alternatives

with more than

one queried

data source

Alternatives cleaned data

Building alternatives

assessment metrics

Alternatives with new data quality

 measures scores

Ranking

Top-k alternatives

Global schema

User query

A
lte

rn
a

tiv
e

s
 w

ith
 o

n
e

 q
u

e
rie

d
 d

a
ta

 s
o

u
rc

e

a
n

d
 th

e
ir d

a
ta

 q
u

a
lity

 m
e

a
s
u

re
s
 s

c
o

re
s

Alternatives are formed

from all queried data

sources

Retrieving top-k

alternatives

data

2

2

Yes

Figure 2. DIRA workflow components [2]

4. EXPERMENTS AND RESULTS
In this section, we clarify how to implement and validate our data

integration framework and data quality system components. The

experiments aim to calculate the response time and data sources

number used to return query results. The following execution

paths are the principles of our experiments:

 No-measure top-k selection query. This means, query doesn’t
contain quality constraints. Top-k alternatives are returned

ranked by every scope data quality measure.

 Single-measure top-k selection query. This means, user

specifies one data quality measure as a constraint, the data

integration system (DIS) retrieves top-k alternatives ranked

according to specified data quality measure.

 Multi-measure top-k selection query. This means, user

specifies more than one data quality measure as a constraint,

the data integration system (DIS) retrieves top-k alternatives

ranked according to specified data quality measures together.

We execute the experiments on a laptop with an Intel(R)

Core(TM) I5-5200U CPU @ 2.20GHz and 8 GB RAM. The

laptop works with Windows 8.1 Enterprise edition. Microsoft

SQL Server 2014 and Microsoft Visual Studio Express 2012 C#

are tools that we use in our experiments.

4.1 TPC-DI benchmark
Transaction processing performance council (TPC) is an

organization that defines benchmarks related to transaction

processing and database. TPC benchmarks are TPC-C, TPC-DI,

TPC-DS, TPC-E, TPC-H, TPC-VMS, TPCx-HS and TPCx-V,

evaluating computer systems performance is their goal [15].

Our scope benchmark is TPC-DI; TPC released the first version of

its data integration benchmark in January 2014.TPC-DI uses some

tools to estimate the performance of data integration systems.

Figure 3 illustrates a conceptual view of TPC-DI benchmark.

OLTP

Database

HR

Database

Prospect

List

Customer

Management

CDC file extract

CSV file

CSV file

XML file extract

Transforms

Data warehouse

Staging area

Multi format file
Financial

Newswire

Figure 3. A conceptual view of TPC-DI benchmark [16]

The benchmark defines:

 Many schemas for data sources and file formats.

 The way to generate source data and how to store them.

 The schema for destination source (data warehouse).

 The way to transform and move data from data sources to the

data warehouse.

In our experiment, we use only TPC-DI data sources to test our

framework but with some modifications in data as TPC-DI

benchmark depends on 100% accurate data sources but in our

framework we depend on data sources with different levels of data

quality. Data modification was done by adding errors in data; we

replaced some values with nulls and others with not valid and not

accurate values. We will consider the original TPC-DI data as

reference data.

TPC-DI data sources that we use in our experiments are an online

transaction processing database (OLTP DB) a human resource

system (HR) and a customer relationship management system

(CRM).

TPC data sources files are created using data integration generator

called (DIGen) [16]. DIGen uses parallel data generation

framework (PDGF) in data generation. PDGF is a common data

generation framework that provides a set of data generation

capabilities to generate specific TPC-DI data with specific

prosperities [16].

We downloaded TPC-DI tool that contains DIGen file and PDGF

folder from TPC website [15]. We downloaded Java SE 8 as Java

9

Virtual Machine (JVM) with a minimum of Java SE 7 must be

used with DIGen to create the source data.

We used some commands to generate source data by DIGen like

“java –jar DIGen.jar”. The generated source data was in some

batches in the form of file.txt, file.xml and file.csv. DIGen also

generate statistics file named “digen_report.txt”. The statistics file

has some information about the way to generate data and number

of rows in each batch. The schemas created in a SQL server

database called “TPC-DI” and loaded the data into it.

As we mentioned above in section 3.2.1, the process of storing

data sources attributes and relations in the metadata store is the

responsibility of data quality acquisition component (N/P: In our

experiment we will work in relation with population –
completeness = 1). It executes also data quality queries on the data

sources and stores their results in the metadata store. So, metadata

store described in figure 1 was created to include eleven tables in

the same database “TPC-DI”. We also build a mapping tool to

match the global schema columns with the local schema columns.

Table 4 presents the used global schema tables and global schema

columns:

Table 4. Global schema tables and global schema columns that

will be used in our experiment

Global

Schema

Tables

Global Schema Columns

Customer

CustomerId CLastName CFirstName CGender

CAddressLine CCity CState CPhone

CCountry CAge c_m_name c_maritalstatus

c_postalcode c_income c_networth c_numbercards

Account CA_ID CA_NAME CA_STATE

We use stored procedures to implement data quality queries that

run by the data quality acquisition component. Those stored

procedures have the equations used to assess the completeness,

validity, accuracy and timeliness of the data sources attributes,
execute according to schedule job created by SQL server and re-

execute as soon as data sources update.

User input is the second component of data quality system

components. User input lets the user specifies as optional the

quality constraints. He can select between completeness or

validity or accuracy or timeliness or any combinations. The user

also can specify the quality levels for his chosen quality

constraints, in addition to the number of alternatives that he wants

to retrieve.

Following tables and response time of data sources used in our

experiment are presented in table 5

Table 5. Tables and response time of data sources

Data Sources Tables Response Time

OLTP (DS1) Customer and Account 500 sec

HR (DS2) Employee 500 sec

CRM (DS3) Customer and Account 500 sec

Following queried data sources assessment metrics are presented

in table 6 (N/P: Required attributes in user query are CFirstName,

CLastName, CAddressLine, CPhone and Cage and we assume

that user chooses top-1 alternative from the list of ranked

alternatives).

Table 6. Queried data sources assessment metric

Queried

Data

Sources

Retrieved

Attributes

Aggregate

Completeness

for Retrieved

Attributes

Aggregate

Validity

for

Retrieved

Attributes

Aggregate

Accuracy

for

Retrieved

Attributes

Aggregate

Timeliness

for

Retrieved

Attributes

DS1

CFirstName

CLastName

CAddressLine

CPhone

CAge

0.998 0.982 0.975 0.773

DS2

CFirstName

CLastName

CAddressLine

CPhone

CAge

0.987 0.964 0.956 0.628

DS3

CFirstName

CLastName

CAddressLine

CPhone

CAge

0.987 0.956 0.948 0.299

Table 7 presents simple form for alternatives aggregated

metrics[2] according to scope data quality measures and queried

data sources presented in table 6.

Table 7. Alternatives aggregated metrics

Alternative

Name

Alternative

Queried

Data

Sources

Alternative

Completeness

Alternative

Validity

Alternative

Accuracy

Alternative

Timeliness

Alternative1 DS1 0.998 0.982 0.975 0.773
Alternative2 DS2 0.987 0.964 0.956 0.628
Alternative3 DS3 0.987 0.956 0.948 0.299
Alternative4 DS1,DS2 0.992 0.973 0.966 0.773
Alternative5 DS1,DS3 0.992 0.969 0.962 0.773
Alternative6 DS2,DS3 0.987 0.960 0.952 0.628

Alternative7
DS1,DS2,

DS3
0.990 0.967 0.960 0.773

4.1.1 Number of ranked alternatives and the number

of accessed data sources in user selected alternative

(Example 1)
In example 1, we choose completeness and timeliness from scope

data quality measures as quality constraints and table 8 presents

the number of returned ranked alternatives according to our

framework and the number of accessed data sources in user

selected alternative that used to execute query according to

different execution paths.

Table 8. Number of ranked alternatives and the number of

accessed data sources in user selected alternative

Execution

Paths

Retrieved

Attributes

Quality

Constraint

(Optional)

Number

of Accessed

Data

Sources

Number

Of

Ranked

Alternatives

No-measure

top-k selection

query

CFirstName

CLastName

CAddressLine

CPhone

CAge

- 3 7

Single-measure

top-k selection

query

CFirstName

CLastName

CAddressLine

CPhone

Cage

Completeness >

0.992
1 1

10

Multi-measure

top-k selection

query

CFirstName

CLastName

CAddressLine

CPhone

CAge

Completeness >

0.992 and

Timeliness > 0.7

1 1

The results in table 8 and figure 4 show that if no determined

quality measures; whole data sources need to be queried by DIS

and return all combinations of data sources as alternatives. While

adding quality measures reduce the number of accessed data

sources to 1 instead of 3 and the number of returned alternatives

that satisfy user requirements to 1 instead of 7.

Figure 4. Number of ranked alternatives and the number of

accessed data sources in user selected alternative chart

4.1.2 Response time (Example 1)
It is the time between the mediator query submission and

receiving complete query answers from data sources.

In our work, we use calibration techniques[17],[18] to measure

response time. The standard unit to measure the time interval is

seconds. We assume that all data sources have the same

capabilities for answering queries, network traffic, the servers’
workload, database management system and hardware.

Table 9 shows the response time of our framework according to

example 1 in different execution paths.

Table 9. Response time

Execution Paths
Retrieved

Attributes

Quality Constraint

(Optional)

Response Time

(sec)

No-measure top-k selection

query

CFirstName

CLastName

CAddressLine

CPhone

CAge

- 3.225 sec

Single-measure top-k

selection query

CFirstName

CLastName

CAddressLine

CPhone

CAge

Completeness

> 0.992
2.595 sec

Multi-measure top-k

selection query

CFirstName

CLastName

CAddressLine

CPhone

CAge

Completeness >

0.992 and

Timeliness > 0.7

2.595 sec

Table 9 and figure 5 shows that response time reduced by adding

data quality measures.

Figure 5. Response time chart

4.1.3 Number of ranked alternatives and the number

of accessed data sources in user selected alternative

(Example 2)
In example 2, user query become more complex by using

completeness, validity, accuracy and timeliness together as quality

constraints, the required quality level for them is satisfied by more

than one alternative and one of satisfied alternatives consists of

more than one queried data source that they integrate to achieve

the required quality levels.

Table 10 presents the number of returned ranked alternatives

according to our framework and the number of accessed data

sources in user selected alternative that used to execute query

according to different execution paths.

Table 10. Number of ranked alternatives and the number of

accessed data sources in user selected alternative

Execution

Paths

Retrieved

Attributes

Quality

Constraint

(Optional)

Number

of Accessed

Data

Sources

Number

Of

Ranked

Alternatives

No-measure

top-k selection

query

CFirstName

CLastName

CAddressLine

CPhone

CAge

- 3 7

Single-measure

top-k selection

query

CFirstName

CLastName

CAddressLine

CPhone

CAge

Completeness >

0.990
1 3

Multi-measure

top-k selection

query

CFirstName

CLastName

CAddressLine

CPhone

CAge

Completeness >

0.990 and

validity > 0.960

and accuracy >

0.962 and

Timeliness > 0.7

1 2

The results in table 10 and figure 6 show that if no determined

quality measures; whole data sources need to be queried by DIS

and return all combinations of data sources as alternatives. While

adding quality measures reduce the number of accessed data

sources to 1 instead of 3 (the number of accessed data source may

not reduce in another queries and it is a worth case) and the

number of returned alternatives that satisfy user requirements to 2

or 3 instead of 7.

Figure 6. Number of ranked alternatives and the number of

accessed data sources in user selected alternative chart

4.1.4 Response time (Example 2)
Table 11 shows the response time of our framework according to

example 2 in different execution paths.

Table 11. Response time

Execution Paths
Retrieved

Attributes

Quality Constraint

(Optional)

Response

Time (sec)

No-measure top-k

selection query

CFirstName

CLastName

CAddressLine

CPhone

- 3.225 sec

11

CAge

Single-measure top-k

selection query

CFirstName

CLastName

CAddressLine

CPhone

CAge

Completeness > 0.990 2.595 sec

Multi-measure top-k

selection query

CFirstName

CLastName

CAddressLine

CPhone

CAge

Completeness > 0.990

and validity > 0.960 and

accuracy > 0.962 and

Timeliness > 0.7

2.595 sec

Table 11 and figure 7 shows that response time reduced by adding

data quality measures.

Figure 7. Response time chart

5. CONCULSION AND FUTURE WORK
Query results obtained from data integration system have

some problems; they are all returned to the user from all

queried data sources without any specified quality level and

hence they are not ranked and they take a long time.

In this paper, we present data integration framework called

DIRA, this framework improves query results obtained from

DIS and generates them in reasonable time by adding quality

system components and data quality assessment module to

any DIS to retrieve results from only convenient data sources

and return these results ranked according to their quality in

both cases if quality measures are specified in user query or

not.

Our experiments illustrate that our framework can retrieve

results with number of data sources less than the original

DIS, hence less number of ranked alternatives in a reasonable

time.

We can extend our work to include different types of

databases like semi-structured and unstructured data sources,

use additional data quality measures, use different ranking

algorithms, use both as view (BaV) as data integration

system mapping technique and use integrity constraints in

global schema to make query answers more consistent.

6. REFERENCES
[1] M. S. Abdel-moneim and A. H. El-bastawissy, “Data

Quality Based Data Integration Approach,” World of
Computer Science and Information Technology Journal

(WCSIT), vol. 5, no. 10, pp. 155–164, 2015.

[2] Reham I. Abdel Monem, A. H. El-bastawissy, and M. M.

Elwakil, “DIRA : A Framework Of Data Integration
Using Data Quality,” International Journal of Data
Mining & Knowledge Management Process (IJDKP),

vol. 6, no. 2, pp. 37–58, 2016.

[3] M. Poess, T. Rabl, B. Caufield, and I. Datastage, “TPC-

DI : The First Industry Benchmark for Data Integration,”
the 40th International Conference on Very Large Data

Bases, vol. 7, no. 13, pp. 1367–1378, 2014.

[4] F. Sidi, P. Hassany, S. Panahy, L. S. Affendey, M. A.

Jabar, H. Ibrahim, and A. Mustapha, “Data Quality : A
Survey of Data Quality Dimensions,” IEEE, pp. 300–
304, 2012.

[5] M. Kaiser, “A Conceptual Approach to Unify
Completeness , Consistency , and Accuracy as Quality

Dimensions of Data Values,” European and
Mediterranean Conference on Information Systems, vol.

2010, pp. 1–17, 2010.

[6] C. Moraes and A. C. Salgado, “Information Quality
Measurement in Data Integration Schemas,” ACM, 2007.

[7] C. Batini and M. Scannapieco, Data Quality

concepts,Methodologies and techniques. 2006.

[8] W. Fan, F. Geerts, N. Tang, and W. Yu, “Inferring Data
Currency and Consistency for Conflict Resolution,”
ICDE, 2013.

[9] P. N. Mendes, H. Mühleisen, and C. Bizer, “Sieve:
Linked Data Quality Assessment and Fusion,”
Proceedings of the 2012 Joint EDBT/ICDT Workshops,

pp. 116–123, 2012.

[10] I. N. R. Etrieval, “A Flexible Quality Framework For Use
Within Information Retrieval,” Proceedings of the Eighth
International Conference on Information Quality (ICIQ-

03), pp. 297–313.

[11] “Measures of central tendency.” [Online]. Available:
https://statistics.laerd.com/statistical-guides/measures-

central-tendency-mean-mode-median.php.

[12] “Fundamentals of statics.” [Online]. Available:
http://www.usablestats.com/lessons/noir.

[13] P. Angeles and F. García-ugalde, “A Data Quality
Practical Approach,” International Journal on Advances
in Software, vol. 2, no. 2, pp. 259–274, 2009.

[14] I. F. Ilyas, G. Beskales, and M. a. Soliman, “Query
Processing Techniques in Relational Database Systems,”
ACM Computing Surveys, vol. 40, no. 4, pp. 1–58, 2008.

[15] “TPC.” [Online]. Available:
http://www.tpc.org/information/benchmarks.asp.

[16] S. Specification and A. R. Reserved, “TPC
BENCHMARK TM DI Transaction Processing

Performance Council (TPC),” no. November, 2014.
[17] R. M. G. and M. A. L. Jeff C.Gust, “Stopwatch and

Timer Calibrations (2009 edition),” 2009.
[18] M. Spiliopoulou, I. Wirtschaftsinformatik, and H. Berlin,

“A Calibration Mechanism Identifying the Optimization
Technique of a Multidatabase Participant 3 Optimizer

Calibration Methodology,” Conference on Parallel and
Distributed Computing Systems (PDCS), Dijon, France,

1996.

12

Communicating Data Quality in On-Demand Curation

Poonam Kumari
University at Buffalo

poonamku@buffalo.edu

Said Achmiz
achmizs@gmail.com

Oliver Kennedy
University at Buffalo

okennedy@buffalo.edu

ABSTRACT
On-demand curation (ODC) tools like Paygo, KATARA,
and Mimir allow users to defer expensive curation effort un-
til it is necessary. In contrast to classical databases that
do not respond to queries over potentially erroneous data,
ODC systems instead answer with guesses or approxima-
tions. The quality and scope of these guesses may vary and
it is critical that an ODC system be able to communicate
this information to an end-user. The central contribution of
this paper is a preliminary user study evaluating the cog-
nitive burden and expressiveness of four representations of
“attribute-level” uncertainty. The study shows (1) insignifi-
cant differences in time taken for users to interpret the four
types of uncertainty tested, and (2) that different presen-
tations of uncertainty change the way people interpret and
react to data. Ultimately, we show that a set of UI design
guidelines and best practices for conveying uncertainty will
be necessary for ODC tools to be effective. This paper rep-
resents the first step towards establishing such guidelines.

1. INTRODUCTION
Historically, the quality of a dataset would be ensured be-

fore it was analyzed, often through complex, carefully devel-
oped curation processes designed to completely shield ana-
lysts from any and all uncertainty. This curation establishes
trust in the data, which in turn helps to establish trust in the
results of analyses. However, as typical data sizes and rates
grow, this type of brute-force upfront curation process is be-
coming increasingly impractical. As a result, analysts have
started turning to new, “on-demand” or “pay-as-you-go” ap-
proaches [1, 2, 7, 10, 12, 14] to data curation. On-demand
curation (ODC) systems minimize the amount of upfront
time and effort required to load, curate, and integrate data.
Data stored in an ODC is, initially at least, of low quality
and queries are liable to produce incomplete or incorrect re-
sults. To mitigate the unreliability of these results, ODC
systems typically provide a form of provenance or lineage,

tracking the effects of uncertainty through queries and tag-
ging results with relevant quality metrics (e.g., confidence
bounds, standard deviations, or probabilities). If the ana-
lyst finds the result quality insufficient, the ODC can help
her to prioritize her data curation efforts.

Most ODC efforts are specialized forms of probabilistic
databases [13] that allow for queries over uncertain, proba-
bilistically defined data. Classical probabilistic databases
produce outputs either in the form of “certain” answers
(that provide only limited practical utility), or in the form
of probability distributions. Representing a query output as
a distribution alleviates the monotonous (and error-prone)
task of handling probabilities, error conditions, and outliers
in the middle of a query. Nevertheless, error-handling logic
is still necessary, even if it is never expressly declared; A hu-
man interpreting the results must decide whether and how
to act on the results given. Just having a probability distri-
bution for query results is insufficient: the uncertainty must
be communicated to the users who will ultimately act on the
results. Complicating matters further is the fact that many
database users lack the extensive background in statistics
necessary to interpret complex probability distributions.

In this paper, we present our initial efforts to explore how
probabilistic databases can communicate uncertainty about
query results to their users. Fundamentally, we are inter-
ested in how the database should represent potential errors
in tabular data being presented to the user. A represen-
tation that communicates too much information can create
an unnecessary cognitive burden for users. Conversely, if
a representation communicates too little, the user may not
realize that data values are compromised and act on invalid
information.

To explore this tradeoff between imposed cognitive burden
and efficacy, we conducted a preliminary user study with
14 participants drawn from the Department of Computer
Science and Engineering at the University at Buffalo. We
explored four different representations of one specific form
of data uncertainty called attribute-level uncertainty. Our
results show that the choice of how to communicate low-
quality data has a substantial impact on how users react
to that information. Responses to different representations
ranged from a desire for more information, an efficient use
of presented contextual details, and even included mild fear
responses to the data being presented. Thus, we argue that
the design of interface elements for representing uncertainty
is a critical part of probabilistic databases, ODCs, and data
quality research in general. Concretely, this paper makes
the following contributions: (1) We outline a user study that

13

Rating Source
Product Buybeast Amazeo Targe Note
Samesung 4.5 3.0 3.5
Magnetbox 2.5 3.0

Mapple 5.0 3.5 Not a TV?

Figure 1: Examples of uncertainty.

explores four different presentations of attribute-level uncer-
tainty. (2) We quantitatively analyze the tradeoff between
cognitive burden and decision-making based on results from
our study. (3) We qualitatively analyze the different repre-
sentations’ effects on study participants’ thought processes.

2. BACKGROUND
A probabilistic database [13] 〈D, P 〉 is typically defined

as a set of deterministic database instances D ∈ D that
share a common schema, and a probability measure P :
D 7→ [0, 1] over this set. Under possible worlds semantics, a
deterministic query Q may be evaluated on a probabilistic
database by (conceptually) evaluating it simultaneously on
all instances in D, producing a set of relation instances:

Q(D) = { Q(D) | D ∈ D }
Note that these semantics also induce a probability measure
over the set of possible query results as a marginal of P
computed over the result set.

Numerous semi-automated tools for curating low-quality
data [1, 2, 14, 11] emit probabilistic database relations.
These relations model the ambiguity that arises during au-
tomated data curation, most frequently appearing in one of
three forms: (1) Row-level uncertainty, (2) Attribute-level
uncertainty, and (3) Open-world uncertainty. Row-level un-
certainty arises when a specific tuple’s membership in a re-
lation is unknown. Attribute-level uncertainty arises when
specific values in the database are not known precisely. Fi-
nally, open-world uncertainty arises when a relation can not
be bounded to a finite set of possible tuples.

Example 1. The example spreadsheet given in Figure 1
shows reviews for 3 fictional television products from 3 fic-
tional sources. Each of the three types of uncertainty are
illustrated: It is unclear whether the Mapple is actually a
television (row-level uncertainty). There are ratings miss-
ing for both the Magnetbox and the Mapple (attribute-level
uncertainty). Finally, there is the possibility that the spread-
sheet is incomplete and there are television products missing
(open-world uncertainty).

Several mechanisms for presenting probability distribu-
tions to end-users have been proposed. A common approach
is to present only so-called “certain” answers [3] — the sub-
set of the output relation with no row- or attribute-level
uncertainty. Although computing certain answers presents
a computationally interesting challenge, completely exclud-
ing low-quality results significantly decreases the utility of
the entire result set. Another common approach is to com-
pute statistical metrics like expectations or variances for
attribute-level uncertainty, and per-row probabilities (con-
fidences) for row-level uncertainty. Presenting this infor-
mation to users in a way that can be clearly distinguished
from deterministic data is challenging. Thus, systems like
MayBMS [5] and MCDB [6] typically require users to explic-
itly request specific statistical metrics as part of queries. The

mental overhead of manually tracking which attributes of a
dataset are uncertain is an unnecessary burden on users; In
multiple efforts where we have attempted to deploy proba-
bilistic databases in practice [9, 14, 11], manual management
of uncertain data has proven to be a non-starter.

Uncertainty also arises in other contexts. For example,
Online Aggregation [4] uses sampling to approximate and
incrementally refine results for aggregate queries. The user
interface explicitly gives an expectation, confidence bounds,
and % completion, clearly communicating that the result is
an approximation, and the level of quality a user can expect
from it. A second example, Jigsaw [9] simulates what-if sce-
narios, producing graphs that illustrate possible outcomes
over time. Uncertainty is presented visually, with error
bars and secondary lines used to show standard-deviations.
Wrangler [8] helps users to visualize errors in data: A “data
quality” bar communicates the fraction of data in each col-
umn that conforms to the column’s type and the number
of blank records. Finally, the Mimir system [14, 11] uses
automatic data curation operators that tag curated records
with markers that persist through queries. These markers
manifest as highlights that communicate the presence of at-
tribute and row-level uncertainty. Users click on fields or
rows to learn more about why the value/row is uncertain.

3. EXPERIMENTAL DESIGN
The experiment consisted of a ranking task where partici-

pants were presented with a web form that had a 3x3 matrix
showing three ratings each for three products. Participants
were told that the ratings came from three different sources
and were normalized to a scale of 1 to 5, with 5 being best
and 1 being worst. Each participant was asked to evaluate
the products for purchase by ranking the products in the or-
der of their preference. A total of 14 participants, predomi-
nantly students in the Department of Computer Science and
Engineering at the University at Buffalo, participated in the
experiment.

To ensure a roughly predictable ordering from partici-
pants, ratings for each product were generated uniformly
at random with the following constraints: Ratings for one
of the three products (henceforth termed ‘A’) relative to a
second product (termed ‘B’) had to include one extremely
favorable comparison for A (one source gave A a rating at
least 1 higher than B), one somewhat favorable comparison
(one source gave A a rating at least as high as B but no
more than 1 higher), and one disfavorable comparison (the
final source gave A a rating worse than or equal to B but no
more than 1 worse). Similar comparisons also had to hold
between B and the final product (C). These constraints were
designed to elicit a ranking of ‘A’, ‘B’, and ‘C’ from partic-
ipants deciding based on either majority vote or based on
the average of the three ratings.

Participants were asked to complete either one or five
rounds of survey, with each round consisting of four trials.
A single trial consisted of a single ranking task. The first
Certain trial in each round served as a control: The ma-
trix shown was generated exactly as described above. The
remaining trials in each round each evaluated a single rep-
resentation of uncertainty. In these trials, base data gener-
ation followed an identical process. However, in each trial,
one of the following representations of uncertainty was used
to annotate a small number (2-4) of product rating values.
(1) Asterisk: Some ratings were marked with an asterisk

14

0 0.2 0.4 0.6 0.8 1

Color	
 Coding

Confidence	
 Interval

Asterisk

Colored	
 Text

Certain

Probabilities

Ty
pe
	
 o
f	
 U

nc
er
ta
in
ty

Figure 2: Probability of the user’s selection agreeing
with the BestOf3 ranking.

(e.g., 4.5*) and participants were informed that these values
were uncertain. (2) Colored text: The text of some ratings
was colored red (e.g., 4.5) and participants were informed
that these fields were uncertain. (3) Confidence interval:
Some ratings were annotated with ±X where X ∈ [0.5, 1.5]
(e.g., 4.5 +/- 0.5) and participants were informed that the
value for those fields could range over the indicated interval.
(4) Color coding: The cells containing some ratings were

given a red background (e.g., 4.5) and participants were
informed that these fields were uncertain.

Interactions with the web-form — such as product selec-
tion, re-ordering the product list, and submitting the par-
ticipant’s final order — were logged along with timestamps.
In addition to interactions with the web form, the exper-
iment also used a think-aloud protocol: Participants were
asked to verbalize their thought process while performing
the task. Audio logs were transcribed and the anonymized
transcriptions were tagged and coded for analysis.

4. EFFICIENCY AND EFFECTIVENESS
The two primary questions that we sought to answer for

each of the four representations of uncertainty were (1) Is
the representation effective at communicating uncertainty,
and (2) What is the cognitive burden of interpreting the rep-
resentation? Concretely, we identified at least three distinct
behavioral responses to uncertainty in the data presented,
suggesting differences in the efficacy of each representation.
We also noted that all four representations of uncertainty
required a similar amount of decision time, suggesting that
all four representations impose similar cognitive burdens.

Effectiveness. The data presented to users was carefully
selected to have two properties: First, each dataset was se-
lected to elicit a specific ordering, regardless of whether par-
ticipants made their choice based on the best two ratings or
based on the average of all three ratings. We term this rank-
ing order BestOf3. Second, uncertainty annotations were
applied to specific cells of the table specifically to create
ambiguity. As a consequence, we would expect users who
chose to disregard uncertain data entirely to pick orderings
effectively at random relative to BestOf3.

In short, if a representation of uncertainty is effective at
communicating uncertainty, we would expect to see a more
random product ranking. In the confidence interval repre-
sentation — where bounds were not wide enough to prompt

a significant level of ambiguity — we would expect to see
ranking close to BestOf3.

Figure 2 summarizes our results, showing the probabil-
ity of agreement between the participant-selected ordering
and the BestOf3 ordering. Standard deviations are com-
puted under the assumption that agreement with BestOf3
follows a Beta-Bernoulli distribution. A 16.7% agreement
would indicate a purely random ordering. The ‘certain’, de-
terministic baseline shows a consistent, roughly 85% agree-
ment with BestOf3, and as predicted, so does the confi-
dence interval presentation (89%). Both colored text and
color coding significantly altered participant behavior (45%
and 56% agreement with BestOf3). Asterisks were not as
effective at altering participant behavior (73% agreement).
This is consistent with colored text and color coding signal-
ing significant errors, while asterisks signal caveats or minor
considerations on the values presented.

Efficiency. We measure time taken for each form of
uncertainty as a proxy for cognitive burden. Figure 3 il-
lustrates time taken by users to complete each individual
ranking task. We distinguish between the first round, where
participants initially encounter the task and representation,
from subsequent rounds where they are already familiar with
the task. As seen in Figure 3a, participants spent signifi-
cantly more time familiarizing themselves with the overall
ranking task than with any of the specific representations
of uncertainty. Furthermore, time taken per representation
was relatively consistent across all forms of uncertainty; The
slowest two in Figure 3b trials were both deterministic.

5. DISCUSSION
Participants were encouraged to verbalize their thought

process. Based on this feedback, we were also also able
to make several qualitative observations. In general partici-
pants considered consistency in the rating sources and prod-
ucts as a secondary source of feedback about data quality.
For example, if Source 1 had low ratings for all three prod-
ucts, then some participants were more likely to discard it
as uninformative and base their rating solely on the other
two sources. If the range of ratings for a product was wide
(4.5, 2, 1) then the product was considered unreliable by a
few participants. Most of the participants explicitly stated
that they were choosing based on the best two of, or the
average of the three ratings.

Approximately half of the participants conveyed a strong
negative emotional reaction to the color coding representa-
tion. Reactions ranged from participants who expressed a
feeling of negative surprise on first seeing the value to partic-
ipants indicating that the red boxes made them scared. By
comparison, several participants suggested feelings of com-
fort associated with the additional information that the con-
fidence interval supplied.

In addition to strong negative emotional responses, most
participants indicated that they were ignoring values with a
red background, except as a tiebreaker. This was true even
for several participants who did not react in the same way
toward the red text or asterisk representations.

Most participants exhibited risk-averse behavior. Given
two similar choices, many participants stated a preference
for products with more consistency in their ratings, as well
as for products that did not include uncertain ratings. A
frequent exception to this pattern was cases where uncertain

15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350

CD
F

TIME	
 TAKEN	
 IN	
 SECONDS

Certain

Colored	

Text
Asterisk

Confidence	

Interval
Color	

Coding

(a) First Round

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200

CD
F

TIME	
 TAKEN	
 IN	
 SECONDS

Certain

Colored	

Text
Asterisk

Confidenc
e	
 Interval
Color	

Coding

(b) Second to Fifth Rounds

Figure 3: Time taken per form of uncertainty. Graphs show cumulative distributions per-trial.

values appeared at the low end of the rating spectrum —
several participants indicated that the true value of a low,
uncertain rating could only be greater than the value being
shown.

In several instances, participants requested additional in-
formation, most frequently with the asterisk representation.
It is possible that this is an artifact of the experimental pro-
tocol; The asterisk was the first form of uncertainty that
many participants encountered. However, based on our ef-
ficacy analysis, it may also be the case that participants
assumed that this representation signaled less significant er-
rors. In future trials, we will use a random trial order and
evaluate whether some representations are better at prompt-
ing users to seek out additional information.

For confidence bounds, users appeared to react to the pre-
sented uncertainty in one of two ways. One group appeared
to first evaluate whether the uncertainty would make a sig-
nificant impact on their deterministic ranking strategy (best
2 of 3 or average). The other group adopted a pessimistic
view and plugged the lower bound into their determinis-
tic strategy as a worst-case. For the experimental protocol
used, both strategies typically resulted in the same outcome.

6. CONCLUSIONS AND FUTURE WORK
Data quality is becoming an increasingly painful challenge

to scale. As a result of issues ranging from low-quality source
data [8, 14, 11] to time-constrained execution [4, 9], the fu-
ture is clear: Before long, imprecise database query results
will be common. It is thus imperative that we learn how
to communicate uncertainty in results effectively and effi-
ciently. We presented our initial exploration of this space:
a user study that examined four approaches to presenting
attribute-level uncertainty. We plan to continue these efforts
by exploring (1) other types of uncertainty in relational data
(row-level and open-world), (2) qualitative feedback such as
explanations [14], (3) giving the user mechanisms to dynam-
ically control the level and complexity of uncertainty repre-
sentation being shown, and (4) incorporating our findings
into the Mimir on-demand curation system [14, 11].

Acknowledgements This work was supported in part by
a gift from Oracle. Opinions, findings and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of Oracle.

7. REFERENCES
[1] G. Beskales, I. F. Ilyas, L. Golab, and A. Galiullin.

Sampling from repairs of conditional functional
dependency violations. VLDBJ, 23(1):103–128, 2014.

[2] M. Dallachiesa, A. Ebaid, A. Eldawy, A. Elmagarmid,
I. F. Ilyas, M. Ouzzani, and N. Tang. NADEEF: A
commodity data cleaning system. In SIGMOD, 2013.

[3] R. Fagin, P. G. Kolaitis, and L. Popa. Data exchange:
Getting to the core. TODS, 30(1):174–210, Mar. 2005.

[4] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. SIGMOD Rec., 26(2):171–182, June 1997.

[5] J. Huang, L. Antova, C. Koch, and D. Olteanu.
MayBMS: A probabilistic database management
system. In SIGMOD, 2009.

[6] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. Jermaine,
and P. J. Haas. MCDB: a monte carlo approach to
managing uncertain data. In SIGMOD, 2008.

[7] S. R. Jeffery, M. J. Franklin, and A. Y. Halevy.
Pay-as-you-go user feedback for dataspace systems. In
SIGMOD.

[8] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer.
Wrangler: Interactive visual specification of data
transformation scripts. In CHI, 2011.

[9] O. A. Kennedy and S. Nath. Jigsaw: Efficient
optimization over uncertain enterprise data. In
SIGMOD, 2011.

[10] Z. Khayyat, I. F. Ilyas, A. Jindal, S. Madden,
M. Ouzzani, P. Papotti, J.-A. Quiané-Ruiz, N. Tang,
and S. Yin. BigDansing: A system for big data
cleansing. In SIGMOD, 2015.

[11] A. Nandi, Y. Yang, O. Kennedy, B. Glavic, R. Fehling,
Z. H. Liu, and D. Gawlick. Mimir: Bringing CTables
into practice. CoRR, abs/1601.00073, 2016.

[12] S. Roy, L. Orr, and D. Suciu. Explaining query
answers with explanation-ready databases. pVLDB.,
9(4):348–359, Dec. 2015.

[13] D. Suciu, D. Olteanu, C. Ré, and C. Koch.
Probabilistic databases. Synthesis Lectures on Data
Management, 3(2):1–180, 2011.

[14] Y. Yang, N. Meneghetti, R. Fehling, Z. H. Liu, and
O. Kennedy. Lenses: An on-demand approach to ETL.
pVLDB, 8(12):1578–1589, Aug. 2015.

416

Data Cleaning in the Wild: Reusable Curation Idioms from
a Multi-Year SQL Workload

Shrainik Jain, Bill Howe
Computer Science and Engineering Department,

University of Washington,
Seattle, WA, USA

{shrainik, billhowe}@cs.washington.edu

ABSTRACT
In this work-in-progress paper, we extract a set of curation idioms
from a five-year corpus of hand-written SQL queries collected from
a Database-as-a-Service platform called SQLShare. The idioms we
discover in the corpus include structural manipulation tasks (e.g.,
vertical and horizontal recomposition), schema manipulation tasks
(e.g., column renaming and reordering), and value manipulation
tasks (e.g., manual type coercion, null standardization, and arith-
metic transformations). These idioms suggest that users find SQL
to be an appropriate language for certain data curation tasks, but we
find that applying these idioms in practice is sufficiently awkward
to motivate a set of new services to help automate cleaning and
curation tasks. We present these idioms, the workload from which
they were derived, and the features they motivate in SQL to help
automate tasks. Looking ahead, we describe a generalized idiom
recommendation service that can automatically apply appropriate
transformations, including cleaning and curation, on data ingest.

1. INTRODUCTION
Data curation is increasingly recognized as the bottleneck to

analytics. Researchers and practitioners report spending a high
proportion of their time cleaning, restructuring, transforming or oth-
erwise preparing data for analysis. Worse, the time and effort spent
on these “janitorial” tasks are difficult to amortize over repeated
analysis projects; requirements tend to vary widely from project to
project.

Classical approaches to data integration are relevant to curation,
but tend to emphasize the design of a mediated schema to subsume
two or more existing schemas. Data warehouse cubes are also
associated with significant up front design and engineering of a cen-
tralized schema and the ETL workloads to fill it. These heavyweight
“once and for all” approaches are a poor fit in data science contexts,
where small teams of analysts convert data into actionable insights
in more or less real time, drawing together multiple sources to an-
swer targeted questions using specialized methods. Recent systems
aim to reduce the effort required during the data curation step (e.g.,
format-busting and data profiling with Data Wrangler [1], enterprise
integration with Tamr [18]), but scripts-and-files approaches are still

dominant among data scientists: there is no time to amortize the
up-front cost of warehouse design or global-as-view/local-as-view
data integration exercises, and moreover, the data is rarely being ex-
tracted from a carefully engineered schema on which these methods
tend to rely.

But the cost of this over-reliance on scripts and files is high: Our
collaborators in the sciences report spending up to 90% of their time
manipulating data [10], consistent with other anecdotal reports of
the balance of time between data curation versus data analysis.

To reduce the burden of data janitorial work and improve reuse,
we posit that databases can be naturally extended to support the en-
tire data lifecycle, including preliminary data cleaning and curation
from untrusted sources typically handled outside the database. That
is, we argue that databases should be designed to encourage inges-
tion of dirty, weakly structured data (i.e., rows-and-columns but no
engineered schema), and that curation should be performed directly
in the database by writing SQL. In this paper, we provide evidence
of how this approach of letting databases do the curation via SQL
queries, actually worked in practice by finding and characterizing

‘cleaning idioms’ in a multi-year query workload.
We see multiple benefits to letting databases do this heavy lifting:

i) the data always resides at one place during the entire analysis
lifecycle (Figure 1), ii) the cleanup steps become more scalable, re-
liable, and reusable, and iii) the raw data is always directly available
for reprocessing and recleaning in new contexts.

Ing
es
t

Cle
an
ing

Sy
nth

es
is

Ma
na
ge
me
nt

An
aly
tic
s

Vis
ua
liza

tio
n

Sh
ari
ng

SQLShare

RDBMS

Figure 1: We find relational databases to be relevant at all
stages in the scientific data lifecyle. SQLShare, a cloud-hosted
database, empowers novice users by providing a system which
handles use-cases across the data lifecyle.

The primary disadvantage of this approach is the SQL authorship:
many common curation tasks, while expressible in SQL, are suf-
ficiently awkward as to prevent uptake. Our hypothesis was that
direct support for a set of common SQL data curation idioms can
make SQL-based curation competitive with script-based curation.

To understand data curation tasks in practice, we analyzed the
workload of the SQLShare system [12, 11, 10], a Database-as-a-
Service system targeting scientists and engineers. SQLShare en-

17

courages users to upload uncurated datasets over the web “as is,”
write queries across any datasets in the system, and share the results
as views. The goal is to reduce the overhead in using relational
databases in ad hoc analytics scenarios by reducing or eliminating
upfront costs associated with installation, configuration, schema de-
sign, tuning, and ingestion. SQLShare supports automated schema
inference and tolerates dirty data; these features allowed users to
switch from managing and sharing brittle, dynamic sequences of
scripts to a single system where all the operations can be performed
safely, reliably, and scalably.

Over the years, we collected the query logs on SQLShare and an-
alyzed interesting use cases. One common use case, as we expected,
was that of data cleanup and curation tasks. We show in this work
how we can use these query logs to identify common cleanup tasks
and provide them as suggestions for newer dataset uploads.

Furthermore, we envision how these cleanup idioms can be used
to inform design of newer databases as follows:

1. Identify the clean up task from the query logs (hint: these are
often the very first tasks performed on a dataset)

2. Generate templatized idioms for these cleanup tasks.

3. Upon newer dataset uploads, identify which idioms can be
applied to the datasets.

4. Synthesize a clean up query from the selected idiom.

In this paper, we identify common curation patterns that appeared
prominently in the SQLShare workload, we describe how they are
used in practice, and how these patterns informed specific features
in SQLShare to assist in data ingest and query authoring. Finally,
we describe some ongoing work in semi-automatic data curation
based on these idioms.

2. SQLSHARE WORKLOAD
SQLShare is a Database-as-a-Service system targeting scientists

and engineers. Users upload datasets through a web interface as-is
with no explicit schema, write queries across any datasets in the
system, and share the results as views. The goal is to reduce the
overhead in using relational databases in ad hoc analytics scenar-
ios: installation, configuration, schema design, tuning, and data
ingestion. Queries are submitted through a web interface, allowing
collaborative query authoring and avoiding any software installation.
The SQLShare interface facilitates and encourages the liberal use of
views. Users frequently create deeply nested hierarchies of views
to break down complex problems, clean and share intermediate
datasets, and record provenance for complex results. SQLShare has
been deployed in a number of scientific contexts and has proven to
be useful even among SQL first-timers. Howe et al. describe the
SQLShare architecture and motivation in detail in [9, 11, 12]. [10,
11] describes an in depth use cases of SQLShare view relational view
sharing. SQLShare aims at reducing data management overhead
in all stages of the data lifecycle shown in Figure 1. While there
is no built-in support for visualization, Key et al. showed how the
SQLShare can be extended to afford automatic visualization [14].

Analysis of this workload [3] showed that users were frequently
expressing data curation and cleaning tasks directly in SQL. Since
SQLShare encouraged users to upload datasets as is, a significant
number of queries submitted to the system were intended to reshape
the data, rename columns, remove errant values, and implement
other data curation tasks. In this paper, we identify the common data
cleaning idioms present in the SQLShare workload and consider
how they can be generalized and applied automatically to incoming
data.

Listing 1 Example queries for each idiom.
Vertical recompositioning:
"SELECT * from [gbc3].[sqlshare-exp.txt]
UNION ALL
SELECT * from [gbc3].[gen_sqlshare.txt]"
Horizontal recompositioning:
"SELECT * FROM [che].[m1]
FULL OUTER JOIN [che].[m3]
ON
[che].[m1].m1_loci_id=[che].[m3].m3_loci_id"
Column rename:
"SELECT column2 as sp, column3 as SPID,
column4 as Prot FROM
[userX].[uniprotolyblastx2.tab]"
NULL injection:
"SELECT CASE WHEN [400 avg NSAF] = 0
THEN NULL
ELSE [2800 avg NSAF]/[400 avg NSAF] END
FROM
[emma].[NSAFwithAve]"

Table 1: Frequency of observed idioms (total datasets: 4535)

Idiom Datasets
Vertical recompositioning 100

Horizontal recompositioning 210
Column rename 720
NULL injection 420

3. CURATING IDIOMS
The ubiquity of weakly structured data in the science use cases

required SQLShare to tolerate (and even embrace) upload of weakly
structured data. SQLShare encourages users to write SQL queries
to repair and reorganize data rather than relying on offline scripts.
By mining the workload, we extract generalizable patterns used to
perform these repairs and use them to design services to partially
automate cleaning tasks.

The SQLShare query corpus presents rich evidence to support
this hypothesis. By searching the corpus of 4535 derived datasets
(views), we found specific SQL idioms that correspond to schemati-
zation tasks: cleaning, typecasting, and integration.

We focus on the following curation patterns extracted from the
SQLShare logs. Along with each idiom, we present an example
query from the logs in Listing 1, and a method for using the id-
iom to support curation-on-ingest. Table 1 shows the frequency of
occurrences of these idioms.

• Vertical recompositioning: Datasets in SQLShare are often
representative of scientific processes where one logical dataset
arrives in the form of several distinct files arriving at different
times. For example, one lab collected data daily from a sensor
depoyed in a local estuary. The need to pre-establish a schema
and load the data file-by-file makes databases unattractive in
these contexts, but SQLShare helped eliminate steps during
data ingest. However, users still needed to craft a UNION
ALL query to assemble the results, sometimes reordering
columns or casting types to align the derived schemas.

Curation on ingest: By learning these schema alignment
heuristics automatically from the data, and applying schema

18

matching methods, these UNION ALL queries can be auto-
matically recommended and applied by the system upon data
ingest. One such approach was describe in our previous work
on automatically deriving example queries from base data [8].

• Horizontal recompositioning: This idiom pertains to horizon-
tally partitioned datasets. As with vertical recompositioning,
scientific processes generating the data sometimes produce
horizontally split data. Sometimes different labs working on
same samples generate different attributes about them. These
cases appear in the logs as multiway 1:1 joins.

Curation on ingest: Suggesting queries for horizontal recom-
positioning can be non-trivial. However, we can again use the
approach shown in [8] to find potential for joins automatically.
Automatic join finding using measures like jaccard similarity
has been done in the past, combining this approach with a
rich hand written query log to suggest data curation idioms is
something that can finally make such approaches viable.

• Column renaming: It is common for datasets in SQLShare
to have no column names in the source files. For this user
scenario, SQLShare assigns default column names. Users
are encouraged to write SQL to assign semantic names. We
find evidence of 1996 uploaded tables, which is about 50% of
the total tables, that had at least one default-assigned column
name. The number of datasets for which all columns were
assigned the default value is 1691. Almost 16% of datasets
involve some kind of column renaming step, suggesting that
users have adopted SQL as a tool for adding semantics to
their data. We find this as sufficient evidence to back our
hypothesis that the SQLShare workload contains a rich set of
cleanup and curation queries.

Curation on ingest: While identifying potential columns to
rename is easy (columns with the default names are obvious
candidates to begin, with a few false positives), suggesting
valid renames is a very ambiguous problem. However, since
we do have the advantage of having the previous tables and
queries written on them. One approach could be to match the
range of values of the column to rename to the range of values
to previously existing and renamed columns. For example, for
an attribute whose range is 0 to 360 and renamed to ‘Angle’,
it might make sense to suggest for columns with values in
the same domain. Another possible way could to be calculate
the earth mover distance [17] between the histograms of col-
umn values and suggest rename to column with which this
distance is least. There are other principled approaches as in
WebTables [7] which uses the attribute correlation statistics
to suggest schema auto-complete.

• NULL injection and Type Coercion: Sentinel values are rou-
tinely used to mark missing or inapplicable data; we see string
values of “N/A” for example embedded in an otherwise nu-
meric column. The SQL authors can use assemblies of CASE
WHEN expressions, filtering, and type casting to replace
these values with NULL or otherwise repair them. These con-
structs are conceptually trivial (“Across all columns, replace
the value X with NULL”) but hand-writing the corresponding
query is tedious and error-prone. After removing bad tuples
and replacing missing values with NULL, we find that about
200 of derived datasets used SQL CAST to introduce new
types on existing columns.

Curation on ingest: Our current implementation automati-
cally infers data types based on a prefix of rows, and creates

two table. The first table corresponds to the predicted type,
and the second table holds non-conforming rows and has ev-
ery column typed as a string. Finally, a view is created to
union the 2 tables and is presented to the user, along with
the information about the 2 base tables. This process helps
separate the numeric data from the sentinel values, but does
not automatically apply the CASE expressions.

3.1 Towards Idiom-Based Data Curation
So far we have shown the evidence of curation via SQL queries

in the SQLShare workload. We discussed how these queries can be
characterized into common curation idioms and finally we detailed
the potential algorithms for curation on ingest.

Tying it all together, the idiom recommendation algorithm would
work as follows:

• Identify the common curation idioms, the very first queries
on a dataset are often representative of these idioms.

• Generate a query template for each idiom as shown in Qunits
[16] and also in SQLShare analysis [11].

• At the time of data ingest, we use the curation on ingest
techniques in section §3 to identify possible idioms.

• Synthesize the curation queries from the templates and pro-
vide them as suggestion to the users. The query synthesis
problem has already been solved with multiple examples al-
ready available in the literature [6, 4, 5].

This approach of suggesting queries at ingest can save a lot of
user time because writing these queries by hand can be repetitive
and time consuming. The false positives don’t hurt a lot because the
user is always in loop and chooses which curation idiom, if any, she
wants to apply to her dataset.

In our current implementation, we have a working analysis pipeline
[11] and idiom detection. The next steps include integrating this
pipeline with the SQLShare system and implementing a query syn-
thesis algorithm. We are actively working on a demo system and
hope to present in the immediate future.

4. RELATED WORK
Parsing of complex formats (messy data) to produce weakly struc-

tured data for further processing is a problem that has been ap-
proached previously, OpenRefine [2] and Wrangler [1] being pop-
ular examples of this approach. These tools do not offer support
working with multiple datasets and have been shown to have domi-
nant costs [13].

SnipSuggest [15] is an example of system which provides auto
completion of queries and has been shown to enable non-experts to
write complex SQL. Our work has similar aims, but our approach
is to suggest complete queries, automatically synthesized based on
previous queries.

WebTables [7] is another work in similar domain, but the focus is
to provide automatic schema completion for myriad of documents
of the web. We approach suggests a possible use of their schema
completion algorithm, but goes beyond just schema completion and
provides a richer set of curation idioms.

Akbarnejad et al. [5] used a similar approach, i.e. using history
and preferences to recommend queries. We hope to extend their
work and use it an a setting where user is automatically suggested
queries on ingest, i.e., the required interaction is minimal, while the
queries are still relevant. However, we have one critical advantage
in our proposed system, a workload with real handwritten queries.

19

One of our previous works [8] presents the notion of suggesting
automatic starter queries, or queries by example, aimed at providing
novice users with example and ease the ramping up process. This
paper has a similar goal, but our approach has one major difference
in that we learn the idioms we are suggesting from the query logs,
these idioms are proven to be useful to users, since they have already
used them and have the potential to suggest very complex queries
(something which the previous approach lacked).

5. CONCLUSION AND FUTURE WORK
We presented a work in progress which uses handwritten queries

from a five-year corpus of Database-as-a-Service platform called
SQLShare to identify data clean up queries written in SQL. The
design choices in SQLShare enabled the users to use databases all
stages in the scientific data lifecycle. We present evidence of clean
up and curation being done via SQL queries and discuss methods in
which these query idioms can be used to suggest curation queries
to users at the time of data ingest. We talked about the analysis
of SQLShare workload and how we mined the queries related to
cleaning and curation. We also identified some commonly used
idioms which in our opinion should be better supported in databases.
Currently we have set up workload analysis pipeline as shown in
[11] and have a naive way to find out possible curation queries.
Since the clean up queries are usually the very first queries on a
dataset, our current methods looks for common idioms amongst
these. Our immediate next plan is to extend this work to:

• Incorporate an idiom recommendation process into SQLShare

• Identify other query idioms for scientific use cases. This can
be done by clustering embeddings for queries in a higher
dimensional space and associating idioms with these clusters.

Our final vision is to have a system which takes in a dataset (plus
JBOTs) and suggests curation & scientific analysis queries that can
run on it.

6. REFERENCES
[1] Data wrangler.

http://vis.stanford.edu/wrangler/.
[2] OpenRefine (formerly google refine).

http://openrefine.org/.
[3] Sqlshare workload data release 1. https://uwescience.

github.io/sqlshare/data_release.html.
[4] S. Abdul Khalek and S. Khurshid. Automated sql query

generation for systematic testing of database engines. In
Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering, ASE ’10, pages 329–332,
New York, NY, USA, 2010. ACM.

[5] J. Akbarnejad, G. Chatzopoulou, M. Eirinaki, S. Koshy,
S. Mittal, D. On, N. Polyzotis, and J. S. V. Varman. Sql querie
recommendations. Proceedings of the VLDB Endowment,
3(1-2):1597–1600, 2010.

[6] N. Bruno, S. Chaudhuri, and D. Thomas. Generating queries
with cardinality constraints for dbms testing. Knowledge and
Data Engineering, IEEE Transactions on, 18(12):1721–1725,
2006.

[7] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and Y. Zhang.
Webtables: exploring the power of tables on the web.
Proceedings of the VLDB Endowment, 1(1):538–549, 2008.

[8] B. Howe, G. Cole, N. Khoussainova, and L. Battle. Automatic
example queries for ad hoc databases. In Proceedings of the
2011 ACM SIGMOD International Conference on
Management of data, pages 1319–1322. ACM, 2011.

[9] B. Howe, G. Cole, E. Souroush, P. Koutris, A. Key,
N. Khoussainova, and L. Battle. Database-as-a-service for
long-tail science. In Scientific and Statistical Database
Management, pages 480–489. Springer, 2011.

[10] B. Howe, F. Ribalet, D. Halperin, S. Chitnis, and E. V.
Armbrust. Sqlshare: Scientific workflow via relational view
sharing. Computing in Science & Engineering, Special Issue
on Science Data Management, 15(2), 2013.

[11] S. Jain, D. Moritz, D. Halperin, B. Howe, and E. Lazowska.
Sqlshare: Results from a multi-year sql-as-a-service
experiment. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD ’16, pages
281–293, New York, NY, USA, 2016. ACM.

[12] S. Jain, D. Moritz, and B. Howe. High variety cloud databases.
In Proceedings of the 2016 IEEE Cloud Data Management
Workshop., 2016.

[13] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler:
Interactive visual specification of data transformation scripts.
In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 3363–3372. ACM, 2011.

[14] A. Key, B. Howe, D. Perry, and C. Aragon. Vizdeck:
self-organizing dashboards for visual analytics. In
Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pages 681–684. ACM,
2012.

[15] N. Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu.
Snipsuggest: Context-aware autocompletion for sql.
Proceedings of the VLDB Endowment, 4(1):22–33, 2010.

[16] A. Nandi and H. Jagadish. Qunits: queried units in database
search. arXiv preprint arXiv:0909.1765, 2009.

[17] Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for
distributions with applications to image databases. In
Computer Vision, 1998. Sixth International Conference on,
pages 59–66. IEEE, 1998.

[18] M. Stonebraker, D. Bruckner, I. F. Ilyas, G. Beskales,
M. Cherniack, S. B. Zdonik, A. Pagan, and S. Xu. Data
curation at scale: The data tamer system. In CIDR, 2013.

20

Data Quality for Semantic Interoperable Electronic Health

Records
Shivani Batra

Jaypee Institute of Information Technology University,
Sector-128, Noida, India

ms.shivani.batra@gmail.com

Shelly Sachdeva
Jaypee Institute of Information Technology University,

Sector-128, Noida, India

shelly.sachdeva@jiit.ac.in

ABSTRACT
The current study considers an example of healthcare domain

from a BIG DATA perspective to address the issues related to

data quality. Healthcare domain frequently demands for timely

semantic exchange of data residing at disparate sources. It aids in

providing support for remote medical care and reliable decision

making. However, an efficient semantic exchange needs to

address challenges such as, data misinterpretation, distinct

definition and meaning of underlying medical concept and

adoption of distinct schemas. The current research aims to provide

an application framework that aids in syntactic, structural and

semantic interoperability to resolve various issues related to

semantic exchange of electronic health records data. It introduces

a new generic schema which is capable of capturing any type of

data without a need of modifying existing schema. Moreover,

proposed schema handles sparse and heterogeneous data

efficiently. The generic schema proposed is built on the top of

relational database management system (RDBMS) to aid in

providing high consistency and availability of data. For having a

deep analysis of proposed schema considering timeliness

parameter of data quality, experiments have been performed on

two flavours of RDBMS namely row oriented (MySQL) and

column oriented (MonetDB). Results achieved favours adoption

of column oriented RDBMS over row oriented RDBMS under

various tasks performed in current research for timely access of

data stored in proposed generic schema.

Keywords: Data Interoperability, Data Quality, Electronic Health

Records (EHRs), Generic schema, Column oriented RDBMS,

Row oriented RDBMS.

1. INTRODUCTION
In healthcare domain, millions and billions of patient records are

recorded on a daily basis. This leads to BIG DATA and thus,

demands to handle 3V’s (volume, velocity and variety) related to

BIG DATA. Current study is focused on handling 3V’s for

semantic interoperable Electronic Health Records (EHRs).

Semantic interoperable EHRs constitute medical data related to

various patients that possess same meaning to all users using the

same set of attributes. Considering large volume of EHRs, a major

portion of storage space accounts for null values. So, handling

sparseness can greatly reduce storage space requirements.

Moreover, EHRs being related to life of patients, demands real

time access to information. This requires various optimization

techniques which will help in attaining high velocity. Another

important aspect is variety since, EHRs constitutes ambiguous

heterogeneous data. Apart from dealing with volume, velocity and

variety parameters of BIG DATA, healthcare domain often

demands for data interoperability. Frequent data access and

semantic exchange among distant healthcare organizations aids in

improving quality of care. However, this semantic exchange of

data needs to address following challenges.

1. Data misinterpretation: An entity in medical domain may

have different meaning to different organizations. For

example, a hospital (APPOLO) may store body temperature

data in degree Fahrenheit and other hospital (FORTIS)

stores same data in degree Celsius as shown in Figure 1.

When data of APPOLO and FORTIS are exchanged, one

can misinterpret data regardless of the fact that both data

were presenting a correct state of body temperature for some

patient. For handling data misinterpretation, all

organizations involved in data exchange must follow same

data semantics, i.e., there should be semantic

interoperability.

Figure 1. Body Temperature recording at two Hospitals

2. Distinct set of attributes for same medical concept: Various

organizations have their own mechanism for recording data.

For example, a medical concept named as ‘Blood Pressure’

consists of four types of pressures namely ‘Systolic’,

‘Diastolic’, ‘Mean arterial’ and ‘Pulse pressure’. ‘Systolic’

and ‘Diastolic’ are two types of pressure recorded using

medical instrument while ‘Mean arterial’ and ‘Pulse

pressure’ stores a calculated value using ‘Systolic’ and

‘Diastolic’ data. APPOLO might depicts blood pressure

condition (Low, Normal and High) of a patient based on

‘Systolic’ and ‘Diastolic’ pressure value. While, FORTIS

performs same task of predicting blood pressure condition

of a patient based on ‘Mean arterial’ pressure value. This

again leads to difficulty in semantic exchange of data. To

have same set of attributes there should be a mechanism that

provides structural interoperability. Moreover, each attribute

should depict the same set of constraints such as, data type,

i.e., system must be syntactic interoperable.

21

3. Distinct local schemas: Every organization customizes his

schema to capture the data based on local requirements. For

example, APPOLO stores value of ‘Systolic’ and ‘Diastolic’

pressure and not ‘Mean arterial’ pressure. Whereas,

FORTIS reserves a column in local database table for ‘Mean

arterial’ pressure and not for ‘Systolic’ and ‘Diastolic’

pressure. Thus, semantic exchange requires to perform an

operation such as, JOIN to construct a maximal schema that

can capture each and every detail. However, this approach is

not suitable since it require changes in existing database

schema.

4. Timeliness: In an emergency situation, extracting patient’s

medical history from local database without any time delay

is crucial. Absence of right data at right time can adversely

affect treatment given to the patient.

One solution to avoid data misinterpretation and follow same set

of attributes for one medical concept is to adopt a standard based

EHRs system. To resolve distinct local schema, all organizations

need to commit to follow a common standard schema for data

storage for smooth semantic exchange. Moreover, schema adopted

should be rich enough in terms of capturing all existing and future

data requirements without any restructuring of schema. Current

research introduces a new generic schema (in Section 3.2) which

helps in achieving schema interoperability. Also, proposed

generic schema can also be easily expanded to provide data

security to enhance data quality. Physical storage approach (row

oriented or column oriented) adopted for the proposed generic

schema affect the timely access of data. Experimentations has

been done to account for this effect.

1.1 Key Contributions
Core aim of current research is to address issues (data

misinterpretation, distinct set of attributes for same medical

concept and distinct local schema) related to data interoperability.

Key highlights of the work done in this paper are as follows:

1. A new generic persistence model.

2. Minimizing storage requirement by eliminating the need of

storing null values.

3. Handling heterogeneous data.

4. Maintenance of various quality parameters such as, accuracy

and validity, believability, reliability, security,

completeness, accessibility, consistency and fitness for use.

5. Experimental evaluation of proposed generic storage on two

variants of RDBMS viz. row oriented RDBMS (MySQL)

and column oriented RDBMS (MonetDB) under various

tasks performed to have an insight of timeliness as a data

quality parameter.

This will help in building an EHR system which is capable of

dealing large volume with high velocity and can store variety of

data.

1.2 Organization of paper
The paper is divided into various sections. Section 2 describes

layered approach used by various standard organizations to aid in

standardized EHRs. Section 3 ushers the proposed approach and

presents the way syntactic, structural and semantic interoperability

is achieved. Moreover, it introduces a new generic persistence to

handle sparseness and heterogeneous data. Section 4 explains

various data quality parameters achieved in current research.

Section 5 highlights the experimental setup and results attained

considering timeliness parameter of data quality. Section 6 finally

concludes the work done.

2. STANDARDIZED EHRs
Electronic Health Records (EHRs) have a complex structure that

may include data from about 100-200 parameters [2][16] such as,

temperature, blood pressure and body mass index. Individual

parameters will have their own contents. Each contains an item,

such as, ‘data’ (e.g., captured for a blood pressure observation). It

offers complete knowledge about a clinical context, (i.e.,

attributes of data), ‘state’ (context for interpretation of data), and

‘protocol’ (information regarding gathering of data), as shown in

Figure 2 (depicting completeness). Standardized EHRs aid in

providing same context among all organization. For example,

value of blood pressure recorded in sitting position might vary

from the value recorded in standing position. Using standardized

EHRs, state description can be captured to provide same context

to data while exchanging.

Figure 2. Blood Pressure as a concept (at document level)

Many standard organizations are making constant successful

efforts to achieve standardization in healthcare domain for the

purpose of semantic interoperability. Some of these famous

organizations are Health Level 7 (HL7) [10], European

Committee of standardization Technical committee 251 (CEN

TC251) [6], International standard organization (ISO) [12] and

openEHR [14]. These organizations adopt a layered approach for

providing semantic interoperability among EHRs.

2.1 Layered Approach for Standardization
In past, single layer approach was used to design an application.

Incorporating single layer hides segregation between

programming and domain specific concepts, making an

application difficult to modify. Thus, application needs to be

rebuild from scratch to accommodate required amendments. For

quality enhancement and reduction in repeated efforts for building

an updated application, multi-layered approach was introduced.

Multi-layer methodology divides architecture of building an

application in multiple layers. Each layer highlights issues related

to one of various concepts related to developed application.

Considering EHRs, multilevel model approach [1] is widely

adopted, aiming for standardization. Standardization is key to

achieving fitness for use i.e. communicating same interpretation

of data to everyone as originally planned. Layered approach is

presented in Figure 3. It divides the application architecture in

22

different layers termed as Reference Model (RM) [3], Archetype

Model (AM) [5] and Service Model (SM) [4].

Figure 3. Analogy of layered approach to C++ programming

framework

Layered approach can be well-understood through its analogy to

the C++ object oriented programming approach. There are inbuilt

data types such as, ‘int’, ‘float’ and ‘char’ that are already defined

and the application programmer needs to make use of inbuilt data

types to define structure or classes as per their needs. RM layer of

layered approach depicts inbuilt data types and AM layer depicts

user defined data types of C++ object oriented programming

approach. SM layer deals with the overall application provided to

end user similar to a compiled program in C++ environment.

RM in healthcare domain provides all technical information in

terms of data types or data structures to be adopted by final

application. This requires involvement of information technology

(IT) expert for definitions of various aspects used in RM. RM is

stable in nature, similar to inbuilt datatypes in C++ environment.

AM defines domain specific knowledge in form of small modules

called archetypes [4]. All knowledge regarding a medical concept

resides in an archetype. For example, Blood pressure archetype

defines five data attributes termed as ‘Systolic’, ‘Diastolic’,

‘Mean Arterial’, ‘Pulse pressure’ and ‘Comment’ with their

complete definition (as shown in Figure 2). Various aspects

depicting completeness includes data type followed by attribute,

domain of attribute, magnitude units in which attribute is defined

and links to standard terminologies such as, SNOMED-CT [11]

and LONIC [13]. Making use of standard terminologies aids in

semantic interoperability by providing a common definition of

various terms used in healthcare domain. At this level, domain

expert utilizes the information provided in RM to define

requirement specific aspects within an archetype. Once an

archetype is defined it can be saved in archetype repository and,

reused on demand. Healthcare is an expanding domain. As the

domain knowledge expands, a new archetype is build using core

classes defined in stable RM. Any modification in an archetype or

building a new archetype will not require any change at RM or

SM. For instance, incorporating any new user defined structure or

class in C++ environment will not impact existing inbuilt data

types and programs.

SM makes use of archetypes to deliver an application which can

further be reused to build any number of user specific

applications. For instance, any number of programs can be built in

C++ environment using existing inbuilt and user defined data

types.

Layered approach was initially proposed by openEHR. Later on

other organizations such as, ISO 13606 and HL7 adopted dual

model approach for standardization. Interoperability among

standards help in providing ability to communicate between

various applications built based on various standards. Numerous

researches exist [8] that provides framework for switching

between different standards. An organization that adopts

openEHR, HL7 or ISO 13606 can easily migrate to any standard

of choice using such frameworks. Thus, it is very easy for various

organisations to adopt same standard (openEHR in our case).

Current research focuses on openEHR for achieving data quality

and experimentation.

3. SOLUTION APPROACH FOR

SEMANTIC EXCHANGE OF EHRs
Semantic exchange of data in healthcare domain is highly

demanded to enhance quality of care. The current study aims to

resolve the challenges addressed in section 1 for a reliable

semantic exchange of data.

1. Data misinterpretation is resolved by linking to standard

medical terminologies such as, SNOMED-CT and LONIC.

Archetype constraints metric (units) of each attribute that

helps in overcoming any misinterpretation. Hence, adopting

standard facilitates semantic interoperability.

2. Same set of attributes for same medical concept following

same data semantics is achieved through the use of

archetypes.

3. Problem of distinct local schema is handled via proposing a

new generic schema. Schema adopted capture existing and

future data requirements. Simultaneously, it handles sparse

and heterogeneous data.

Current research proposes to use application built on archetypes

defined by openEHR standard and to persist data in a generic

persistence as shown in Figure 4. Each hospital may download

any number of archetype from Clinical Knowledge Manager

(CKM) [7] based on their local requirements and store them in a

local archetype repository. Archetype repository of various

hospitals can have distinct set of archetypes, exactly same set of

archetypes or overlapping set of archetypes depending upon their

local requirements. Based on local archetype repository, a

customized clinical application is built for the corresponding

hospital.

Figure 4. Proposed Approach

23

Data captured by local application is thus stored in a generic

schema proposed in current research (Section 3.2). Generic

schema allows migration of data from various organizations

without making any changes at schema level. Moreover, proposed

generic schema can be enhanced to incorporate security

mechanism that in turn helps in enhancing data quality.

3.1 Handling Interoperability
As specified above, different organizations must adhere to same

set of attributes for same medical concept. Current research

proposes to use archetypes defined by openEHR for this purpose.

Archetypes are agreed formal representation of a medical concept.

It defines consensus on maximal representation of a medical

concept. Archetypes are being defined through Archetype

Definition Language (ADL) [5].

For creation and versioning (modifying an existing) of an

archetype, a prototype process is followed that involves teams

constituting various medical experts. After many review

iterations, archetype is agreed to be published in a standard online

library such as, CKM. Currently, archetypes available on CKM

are followed by 87 countries [7]. Any organization that wishes to

make use of an archetype can download it from any online library

related to any standard. An archetype downloaded from a standard

online library based on one standard can be easily transformed in

other standard using tools such as, POSEACLE converter [8]

using ontology-based archetype transformation process.

POSEACLE converter provides online functionality to transform

an ISO 13606 based archetype into an equivalent openEHR based

archetype. Providing archetypes in a standard online library

enables various organizations involved to easily download

archetype anywhere and anytime for their local archetype

repository.

As described in Section 2, archetypes are built on a stable

structure defined RM. All archetypes related to a standard

(openEHR in our case) will follow same RM. This aids in

providing syntactic interoperability. Use of archetype provides

same set of attributes for same medical concept irrespective of

organization adopting it. This provides a mechanism for achieving

structural interoperability. Moreover, archetypes are linked with

standard terminologies such as, SNOMED-CT and LONIC that

aids in providing common data semantics. Achieving common

data semantics provides semantic interoperability and resolves

issue of data misinterpretation. Thus, archetype provides business

rules, ontology, terminology binding, F-logic, versioning

mechanism, standardized data definition, content and structure,

and language translation capability [17].

Considering all above mentioned features related to semantic

exchange, the current research makes use of archetype to propose

extension to EAV model.

3.2 Proposed Generic Schema
Various healthcare organizations store data in their own schema

as per their local requirements. This creates issues while

semantically exchanging data from various independent resources.

To overcome this problem, current research proposes to use a

generic persistence. Existing solutions for generic persistence in

healthcare domains [9] recommend use of Entity-Attribute-Value

(EAV) model [15]. EAV constitutes three columns named as

Entity, Attribute and Value. One row in EAV corresponds to one

attribute value of particular entity (as per relation table). EAV

model depicts the same logical representation as relational table

through metadata table which reserves information such as, name

of all attributes. Use of metadata provides information regarding

null values that are not stored in EAV model. Only non-null

values are stored in EAV model to limit the storage wastage due

to presence of sparse entries. EAV suffers from the issue of

heterogeneity due to presence of single value column that

constitutes data related to one data type only.

Current research proposes an extension to EAV model namely

Archetype Entity Attribute Value (AEAV) to capture archetype

based data. AEAV provides a generic persistence for archetype

based applications that is more secure than EAV. Firstly, AEAV

extends basic three column structure of EAV to four column

structure for capturing archetype details also as shown in Figure 5.

Figure 5. EAV extended to store archetype details

To deal with heterogeneity, AEAV table is divided in multiple

tables’ segregated based on type of data in value column. Similar

to EAV, AEAV also stores only non-null values. After defining

the extended EAV storage structure, next step is to define numeric

coding for archetype names and attribute names using a manually

designed mapping dictionary as shown in Figure 6. Mapping

dictionary also serve role of metadata table (as in EAV).

Mapping dictionary defined for AEAV has various advantages as

follows:

1. Improved storage: Apart from storage enhancements

achieved by not storing null values, AEAV optimizes space

by not storing long names of archetypes and attributes. It

reduces the storage space by replacing the need of storing

archetype redundantly and attribute name textually to

numeric codes that consumes less space.

2. Improved searching speed: Search efficiency in finding

codes related to one archetype is high by making use of

index structure.

3. No prior knowledge: Adding new archetypes in existing

system require no prior knowledge about existing codes of

attributes since each archetype reuses same set of codes.

Combination of archetype name code and attribute name

code will define a unique code that serves as a unique

identifier in main table.

24

Figure 6. Mapping dictionary for archetype and attribute

names

Once mapping dictionary is defined, Archetype_Name and

Attribute_Name columns of extended EAV table are replaced by

their corresponding codes. Finally, Archetype_Name and

Attribute_Name columns are combined as one column named

“ArchAtt” using steps as follows.

1. Convert numeric code of Archetype_Name into equivalent 8

bit binary code.

2. Append ‘00000000’, i.e. eight 0 bits to the end of 8 bit

Archetype_Name code to make it a 16 bit code.

3. Convert the 16 bit code into an equivalent decimal and

replace existing Archetype_Name value with this new value.

4. Add decimal values of Archetype_Name and

Attribute_Name columns and replace Archetype_Name and

Attribute_Name columns are with one column named

ArchAtt containing this summation value.

Final outcome of the above process on initial tables, i.e., AEAV

model is shown in Figure 7.

Figure 7. Archetype Entity Attribute Value (AEAV) model

Addition of coded ‘ArchAtt’ (of AEAV) in place of ‘Attribute’

column (of EAV) makes AEAV more secure than EAV. AEAV is

meaningless until related coding mechanism is known and

mapping dictionary are available. Thus, any attack on data will

not be able to understand data in absence of mapping dictionary

and algorithm followed to combine Archetype_Name and

Attribute_Name in ArchAtt.

AEAV can be modified to enhance security feature. To

accomplish this, 8 bit code can be replaced with an ‘n’ bit code in

step 2 of coding algorithm. Different organizations can adopt

different values of ‘n’. This make coded values of one

organization distinguished and insignificant to other

organizations. Information regarding ‘n’ can be sent to the

organization involved in data exchange through a well-defined

secured data encryption mechanism.

Although EAV/AEAV eliminates the need to store null values, it

does introduce an overhead of storing entity/attribute code. Thus,

there is a trade-off between amount of sparseness and overhead

introduced in EAV/AEAV. Larger the amount of sparseness,

lower will be the overhead. Hence, EAV/AEAV should be

preferred for domain constituting huge volume of null values.

Healthcare is one such domain and thus, AEAV is suitable to be

adopted for EHRs. Moreover, EHRs are very crucial in terms of

ethical and legal issues related to it. This demands for a secure

transfer of information. AEAV is step towards the secure transfer

of EHRs data.

So far, in current research various challenges identified for

semantic exchange of EHRs and solution proposed are

summarized in Table 1.

4. DATA QUALITY CONSIDERATIONS
In addition to various parameters (Accuracy and validity,

believability, reliability, security, accessibility, completeness, and

consistency) of data quality identified in [16], authors in current

research commit to achieve fitness for use as a data quality

parameter while semantic exchange of data.

1. Accuracy and Validity: Use of archetype entitles solution

for accurate and valid data. Archetype constitute various

business rules to precise data domain and mathematical

logics. Applications built on top of archetypes must adhere

to these business rules and thus, achieves accuracy and

validity.

2. Believability: Involvement of domain expert at AM level

ensures believability of user in application developed.

3. Reliability: Current research adopts dual model approach

which segregates responsibilities of an IT expert from a

domain expert. This segregation restrict any communication

gap between an IT expert and domain expert while

designing an application. Moreover, archetypes available on

standard online library (such as, CKM) follows a rigorous

approach for their development, modification and

deployment.

4. Security: A generic persistence named AEAV is proposed in

current research. Coding of archetype name and attribute

name creates a meaningless information in absence of

mapping dictionary, number of bits used for coding, and

coding algorithm.

5. Consistency: Consistency is achieved in current research by

adopting RDBMS for persistence of data. RDBMS commits

to ACID (Atomicity, Consistency, Isolation and Durability)

properties. Any system built on RDBMS, automatically

commits to ACID properties.

25

Table 1. Solution to challenges identified

`Challenge Proposed Solution

1 Data Misinterpretation  Solved through adoption of archetype based system.

 Using archetypes aids in capturing maximum possible information about medical concept.

 Archetypes provide links to standard medical terminologies such as, SNOMED-CT and LOINC.

2 Distinct set of attribute

for same medical

concept

 Archetypes define standard set of attribute for a medical concept.

 Archetypes following one standard can be transformed to archetype following another standard

using online tools such as, POSEACLE convertor.

3 Distinct Local Schema  Proposed generic schema, AEAV handles this issue.

 Schema is capable to capture all existing and future data requirements without making any

changes in schema.

4 Sparseness  AEAV doesn’t store any null value.

 AEAV reduces space by eliminating need of storing long archetype and attributes names.

6. Completeness: Archetypes are designed to capture maximal

consensus on data definition related to a medical concept.

This ensure completeness of data. Healthcare domain has

one related problem of sparseness, i.e., most of the values

are kept null due to many reasons such as, patient don’t

want to reveal personal information and some parameters

are not applicable in certain situations. AEAV is designed to

avoid storage of null values and thus, excel in saving

storage space. To achieve completeness, mapping dictionary

can be used to construct complete set of attributes

constituting a medical concept. Knowledge of complete set

of attributes facilitates in identifying null values, i.e., the

attributes for which no value is found, will be null.

7. Accessibility: Current research aims to provide

interoperability of data. This enhances accessibility of data.

8. Fitness of use: Approach in current research suggests to

adopt a standardized EHRs system and generic persistence.

Involvement of standardized EHRs restrict to use same set

of attribute for same concept. Moreover, generic persistence

proposed in current research helps in providing schema

interoperability. Thus, data ported from one site to another

will depict same meaning to both.

5. EXPERIMENTS AND RESULTS
So far, authors achieved syntactic, structural and semantic

interoperability by adopting a standard based system for

developing clinical application. Moreover, generic schema

proposed in Section 3.2 provides reduced storage requirement

(thus, handling more volume), support for variety of

(heterogeneous) data and schema interoperability. This section is

devoted to show the impact of different physical storage of

RDBMS viz. row-oriented and column-oriented on timeliness of

data stored as per AEAV. Absence of right information at right

time might cause severe losses in terms of patient’s health and

life. Thus, retrieval of desired data at a very high speed is very

crucial in healthcare domain.

5.1 Hardware and Software Used
We implemented AEAV schema using MySQL Workbench 6.0

CE (row-oriented) and MonetDB 5 (column-oriented). All

experiments are executed on a pair of 2.66 GHz dual-core Intel

Xeon processors with 16 GB RAM running Mac OS X 10.4.11.

5.2 Dataset Description
Data set on which experiments are performed are collected using

two different methodologies.

Method #1: Healthcare applications were designed using three

archetypes provided by openEHR at CKM, namely openEHR-

EHR-OBSERVATION.lab_test-liver_function.v1, openEHR-

EHR-OBSERVATION.lab_test-thyroid.v1 and openEHR-EHR-

OBSERVATION.blood_pressure.v1 and deployed to three private

clinics for collection of data.

Method #2: Liver Disorder dataset and Thyroid dataset were

downloaded from the UCI machine learning repository [18-19].

However, it was not standardized. So, user interfaces were

developed for related archetypes (openEHR-EHR-

OBSERVATION.lab_test-liver_function.v1 and openEHR-EHR-

OBSERVATION.lab_test-thyroid.v1). Downloaded data was

manually fed in these forms to have dataset as per AEAV schema.

To have persistence as per AEAV in both of the above

methodologies, hibernate layer is modified to accommodate

coding algorithm of AEAV. Mapping dictionaries were manually

populated and provided in the application to achieve coding of

archetype name and attribute name at hibernate layer. Attributes

present in archetypes but not in UCI datasets were kept null.

In total 75K records were collected as per the relational model. To

have reliable and accurate results, we removed redundant records.

After removal of redundant data, 75K records were reduced to

50K records.

5.3 Results
Timeliness behavior of AEAV is tested through seven

distinguished tasks by formulating queries in MySQL and

MonetDB.

26

Table 2. Impact of row-oriented and column-oriented storage approach on Timeliness of AEAV modelled data

ID Task Task Description

Time Taken (seconds)

Row-

Oriented

Storage

Column-

Oriented

Storage

Q1

Extracting

Complete

Column Details

Extracting details of Systolic pressure 0.377 0.359

Extracting Systolic pressure, Diastolic pressure and overall

interpretation of all patients
0.618 0.419

Extracting ALP, AST, ALT, Albumin and Globulins of all patients 5.429 0.577

Q2

Extracting

Complete Row

Details

Extracting data of all patients 63.684 1.482

Extracting data of all patients having Total T3 greater than 2 0.499 0.374

Extracting data of all patients having Systolic pressure greater than

100, Diastolic pressure less than 100 and overall interpretation as

Hypotension

0.755 0.569

Q3

Extracting

Selected

Column Details

of Selected

Rows

Extracting Systolic pressure, Diastolic pressure and overall

interpretation of all patients having Patient ID greater than 4500 and

Systolic pressure greater than 100

2.805 1.091

Extracting ALP, AST, ALT, Albumin and Globulins of all patients

having Patient ID less than 5000 and AST greater than 100
4.47 3.962

Q4

Performing

Statistical

Analysis

Extracting the average value of albumin among people tested for

Liver
1.36 0.687

Extracting number of patients tested for BP and diagnosed with

Hypotension
0.396 0.232

Group the patients tested for Liver according to Albumin values 12.635 0.952

Q5 Adding data Insert data of one patient 0.774 0.234

Q6 Deleting data Delete data of one patient 0.372 0.218

Q7 Modifying data Update data of one patient 0.315 0.297

Figure 6. Results of various tasks performed to observe

timeliness behavior of AEAV

Seven tasks are extracting complete column details, extracting

complete row details, extracting complete row details of selected

rows, performing statistical analysis, adding data, deleting data

and modifying data. Time taken for performing different tasks is

presented in Table 2. Execution time taken by various queries

coded for the underlying tasks (presented in Table 2) are averaged

and correspondingly presented graphically in Figure 6.

Column details are mostly enquired in EHRs domain to perform

analysis of population. The analysis performed might deliver new

knowledge that can add value to existing healthcare practices.

Storing EHRs data as per AEAV in column oriented physical

storage can help in performing faster analysis. Change in physical

storage approach of AEAV has shown a drastic performance

change in case of extracting rows, i.e., accessing data of specific

patients. In summary, under all query scenarios, column-oriented

storage approach (MonetDB) outperforms row-oriented storage

approach (MySQL).

6. CONCLUSIONS
Considering large scale healthcare data, a clinical information

system must be able to handle the 3V’s (Volume, Variety and

Velocity) of BIG DATA and should simultaneously support data

interoperability. Current research propose framework for clinical

information system that can handle data misinterpretation, provide

same set of attribute for same medical concept in appropriate

context and generic schema for persistence. Thus, proposed

framework enhances data quality while semantic exchange of data

from one organization to another. Moreover, adopting proposed

approach will

1. supports syntactic, structural and semantic interoperability,

2. refers a generic schema capable of capturing all current and

future data requirements without making any changes in

schema,

3. eliminates the need of storing null values to save storage

space,

4. supports storage of heterogeneous data,

5. achieves accuracy and validity, believability, reliability,

security, completeness, accessibility, consistency and fitness

for use as data quality parameters, and

27

6. improves search efficiency by utilizing optimization

techniques of MonetDB.

Current research adopts standard based EHR system to achieve

syntactic, structural and semantic interoperability. Despite of

attaining syntactic, structural and semantic interoperability,

various organizations can adopt their own local schema which is

tailored as per their requirements. Thus, efficient data

interoperability demands for a generic schema. Hence, a new

generic schema is proposed in current research to attain schema

interoperability. The generic schema proposed is rich enough to

accommodate any existing and future data demands while

eliminating the need of storing null values and handling

heterogeneous data. Apart from providing schema

interoperability, the proposed schema also offers improved

security to enhance data quality.

Considering timely access of data, current research observes

impact of different physical storage variants of RDBMS, i.e., row-

oriented (MySQL) and column-oriented (MonetDB) on proposed

generic schema. Experiments are conducted to show the impact on

timeliness of data by adopting different variants of RDBMS to

store data as per proposed generic schema. Results achieved

clearly favors the adoption of column oriented RDBMS over row

oriented RDBMS.

7. REFERENCES
[1] Atalag, K. and Bilgen, S. Multi-Level Modeling and the Role

of Archetypes in the Design of Health Information Systems:

A Modeling Example in Endoscopy. HIBIT '07 Proceedings

of the International Symposium on Health Informatics and

Bioinformatics, May2007.

[2] Atalag, K. and Yang, H.Y. From openEHR domain models

to advanced user interfaces: a case study in endoscopy.

In Health Informatics New Zealand Conference, November

2010.

[3] Beale, T. and Frankel, H. The openEHR Reference Model.

Extract Information Model. The openEHR release, 1, 2007.

[4] Beale, T. and Heard, S. openEHR architecture overview.

openEHR Foundation. London, UK, 2008.

[5] Beale, T. and Heard, S. The openEHR archetype model-

archetype definition language ADL 1.4. openEHR

release, 1(2), 2008.

[6] CEN European committee for Standardization: www.cen.eu

[online] (Accessed 01/16).

[7] Clinical Knowledge Manager: http://www.openehr.org/ckm/

[online] (Accessed 01/16).

[8] Costa, C.M., Menárguez-Tortosa, M. and Fernández-Breis,

J.T. Clinical data interoperability based on archetype

transformation. Journal of biomedical informatics, 44(5),

2011, 869-880.

[9] Dinu, V. and Nadkarni, P. Guidelines for the effective use of

entity–attribute–value modeling for biomedical

databases. International journal of medical

informatics, 76(11), 2007, 769-779.

[10] Health Level 7 International - Homepage: www.hl7.org

[online] (Accessed 02/16).

[11] International Health Terminology Standards Development

Organization. Systematized Nomenclature of Medicine-

Clinical Terms (SNOMED CT). Available from:

http://www.ihtsdo.org/snomed-ct/ [online] (Accessed 04/16).

[12] ISO organization: www.iso.org [online] (Accessed 01/16).

[13] Logical Observation Identifiers Names and Codes – LOINC:

https://loinc.org/ [online] (Accessed 04/16).

[14] openEHR Foundation: www.openehr.org [online] (Accessed

01/16).

[15] Patrick, J., Ly, R. and Truran, D. Evaluation of a persistent

store for openEHR. HIC 2006 and HINZ 2006: Proceedings,

2006, 83-89.

[16] Sachdeva, S. and Bhalla, S. Semantic interoperability in

standardized electronic health record databases. Journal of

Data and Information Quality (JDIQ), 3(1), 2012, 1-37.

[17] Sachdeva, S., Yaginuma, D., Chu, W., & Bhalla, S. Dynamic

generation of archetype-based user interfaces for queries on

electronic health record databases. In Databases in

Networked Information Systems, Springer Berlin Heidelberg,

2011, 109-125.

[18] UCI Machine Learning Repository: Liver Disorders Data

Set: https://archive.ics.uci.edu/ml/datasets/Liver+Disorders

(Accessed 06/15).

[19] UCI Machine Learning Repository: Thyroid Disease Data

Set: https://archive.ics.uci.edu/ml/datasets/Thyroid+Disease

(Accessed 06/15).

28

Towards Rigorous Evaluation of Data Integration Systems -
It’s All About the Tools

Boris Glavic
Illinois Institute of Technology

bglavic@iit.edu

ABSTRACT
Given the maturity of the data integration field it is surpris-
ing that rigorous empirical evaluations of research ideas are
so scarce. We identify a major roadblock for empirical work
- the lack of tools that aide a researcher in generating the in-
puts and gold standard outputs for their integration tasks in
a controlled, effective, and repeatable manner. In this talk,
I will give an overview of our efforts for developing such
tools and highlight how they have been used for streamlin-
ing the empirical evaluation of a wide variety of integration
systems. Particularly, the talk will focus on two systems:
iBench and BART. iBench is a metadata generator that can
be used to evaluate a wide-range of integration tasks (data
exchange, mapping creation, mapping composition, schema
evolution, among many others). The system permits control
over the size and characteristics of the metadata it gener-
ates (schemas, constraints, and mappings). BART (Bench-
marking Algorithms for data Repairing and Translation) is
a scalable system for introducing errors into clean databases
for the purpose of benchmarking data-cleaning algorithms.
The presentation will include a short live demonstration of
both systems.

129

Three Semi-Automatic Advisors for Data Exploration

Thibault Sellam
CWI

thibault.sellam@cwi.nl

ABSTRACT
In data exploration, users query a database to discover its
content. Typically, explorers operate by trial and error.
They write a query, observe the results and reiterate. When
the data is small, this approach is perfectly acceptable. But
what if the database contains 100 s of columns and 100,000s
of tuples? During this talk, I will introduce Blaeu, Claude
and Ziggy, three “advisors” for data exploration. The main
idea is to use simple machine learning models to help users
navigate the space of all possible queries and views. I will
present practical use cases, discuss the main ideas behind
each assistant and describe open research problems.

130

Graph-based Exploration of Non-graph Datasets

Udayan Khurana
IBM Research

ukhurana@us.ibm.com

ABSTRACT
Graphs or networks provide a powerful abstraction to view
and analyze relationships among different entities present
in a dataset. However, much of the data of interest to an-
alysts and data scientists resides in non-graph forms such
as relational databases, JSON, XML, CSV and text. The
effort and skill required in identifying and extracting the rel-
evant graph representation from data is often the prohibitive
and limits a wider adoption of graph-based analysis of non-
graph data. In this paper, we demonstrate our system called
GraphViewer, for accelerated graph-based exploration and
analysis. It automatically discovers relevant graphs implicit
within a given non-graph dataset using a set of novel rule-
based and data-driven techniques, and optimizes their ex-
traction and storage. It computes several node and graph
level metrics and detects anomalous entities in data. Fi-
nally, it summarizes the results to support interpretation by
a human analyst. While the system automates the compu-
tationally intensive aspects of the process, it is engineered to
leverage human domain expertise and instincts to fine tune
the data exploration process.

131

Data Quality Management in Data Exchange Platforms An
Approach for the Industrial Data Space in Germany

Christoph Quix
Fraunhofer FIT

christoph.quix@fit.fraunhofer.de

ABSTRACT
Data quality plays an important role in data marketplaces
as a value is assigned to the data and customers pay for the
received data. It is known that data quality problems arise
especially in data integration projects, when data (from one
organization) is used in a different context than originally
planned. This problem is aggravated in a setting where data
is exchanged between different organizations as in a data
marketplace. In addition, data consumers expect a high
data quality as they pay for the data. Research in data
quality has derived many issues from quality management
for classical products and transferred this to the case of data
management. An open question is how results from quality
assurance and pricing models in the classical product world
can be transferred to data. In this talk, we will review the
state of the art in the area of data quality management and
pricing in data marketplaces and report on the initiative
“Industrial Data Space” in Germany, in which open platform
for data exchange between industrial organizations is being
developed.

132

