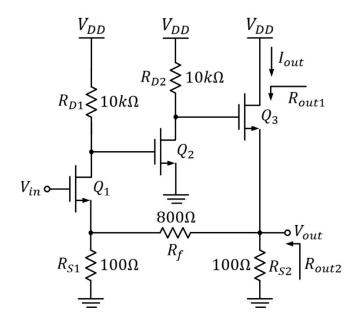
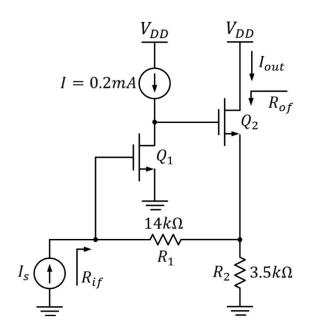


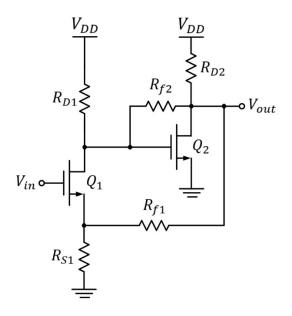
Electronics 2 Analog and Digital Electronics ELCN 201


Sheet 6: Feedback Amplifiers

- 1) For a negative-feedback amplifier with closed-loop gain of $A_f = 100$ and an open-loop gain of $A = 10^4$
 - i. Determine the feedback factor β
 - ii. If a manufacturing error results in a reduction of A to 10^3 , calculate the new closed-loop gain
 - iii. What is the percentage change in A_f corresponding to the factor of 10 reduction in A?
- 2) An amplifier has a midband gain of 1000, and a single high-frequency pole at 10*KHz*. Negative feedback is employed so that the midband gain is reduced to 10. What are the upper 3*dB* frequencies of the closed-loop gain?
- 3) For the feedback amplifier shown, find an expression for the closed-loop gain and output impedance



- 4) For the feedback amplifier shown below, all three MOSFETs are biased and sized to operate at $g_m = 4mA/V$. (Hint: You may neglect r_o except for the calculation of R_{out})
 - i. Considering the feedback amplifier as a transconductance amplifier with output current I_{out}
 - i. Sketch the A circuit and find the value of A
 - ii. Calculate the closed-loop gain A_f
 - iii. Assume that $r_{o3} = 20k\Omega$, find the output resistance R_{out1}


- ii. If the voltage is taken as the output, in which case the amplifier becomes series—shunt feedback amplifier
 - i. Sketch the A circuit and find the value of A
 - ii. Calculate the closed-loop gain A_f
 - iii. Assume that $r_{o3}=20k\Omega$, find the output resistance R_{out2}

- 5) The feedback amplifier shown below utilizes two identical NMOS transistors sized so that at $I_D=0.2mA$ they operate at $V_{ov}=0.2V$. Both devices have $V_t=0.5V$ and $V_A=10V$
 - i. If I_s has zero DC component, Find g_m and r_o for each transistor
 - ii. Find the A circuit and calculate the value of A, R_i and R_o
 - iii. Calculate the value of A_f , R_{if} and R_{of}

6) For the feedback amplifier shown below, find an expression for the closed-loop gain and output impedance

