# Lecture 7 – Feedback Amplifier Part II

#### Dr. Mohamed Refky Amin

Electronics and Electrical Communications Engineering Department (EECE)

Cairo University

elcn201.eng@gmail.com

http://scholar.cu.edu.eg/refky/

## Outline of this Lecture

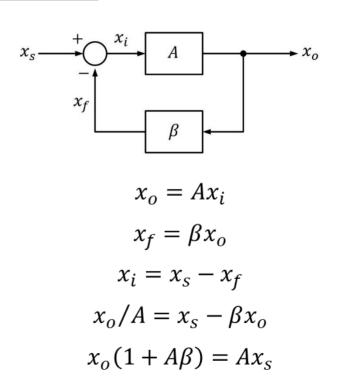
- Previously on ELCN 201
- Shunt-Shunt Feedback Topology
- Shunt-Series Feedback Topology

## Feedback Amplifier

Amplifiers are usually classified into two groups: open-loop amplifiers and closed-loop (feedback) amplifiers

In amplifier design, feedback is usually applied to achieve one or more of the following goals:

- Make the value of the gain less sensitive to variations in the values of circuit components.
- Extend the Bandwidth
- Modify the input and output resistances


#### General Feedback Structure

The closed-loop gain of the feedback amplifier  $A_f$ , is given by

$$A_f = \frac{x_o}{x_i} = \frac{A}{1 + A\beta}$$

The quantity  $A\beta$  is called the **loop gain** 

The quantity  $1 + A\beta$  is called the **amount of feedback** 

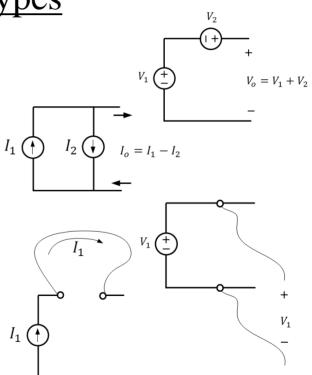


## Feedback Amplifier Types

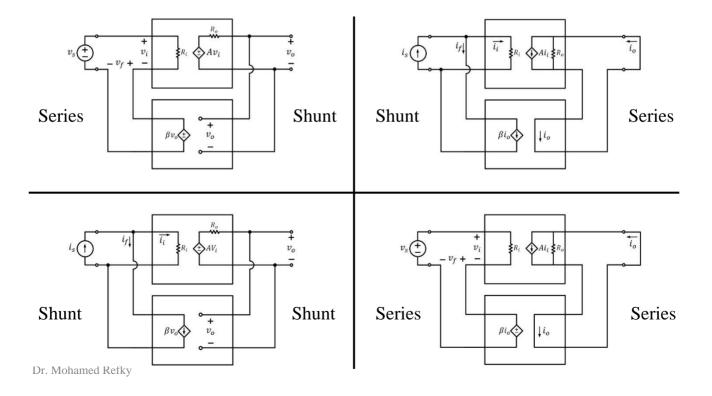
Based on the input signal to be amplified and on the desired form of output signal, feedback amplifiers are classified into four categories:

| Amplifier Type             | Input signal $x_s, x_i, x_f$ | Output signal $x_o$ |
|----------------------------|------------------------------|---------------------|
| Voltage Amplifier          | Voltage                      | Voltage             |
| Current Amplifier          | Current                      | Current             |
| Transconductance Amplifier | Voltage                      | Current             |
| Transresistance Amplifier  | Current                      | Voltage             |

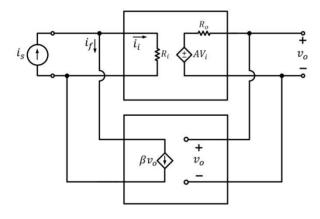
Dr. Mohamed Refky


## Feedback Amplifier Types

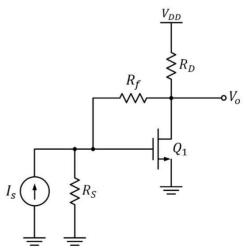
Voltage signals are added or subtracted (mixed) in **series** fashion


Current signals are mixed in **parallel (shunt)** fashion

Voltage is sampled in a **parallel** (**shunt**) fashion


Current is sampled in a **series** fashion




## Feedback Amplifier Types



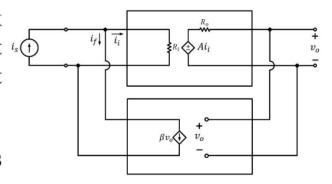
## **Shunt-Shunt Feedback Topology**

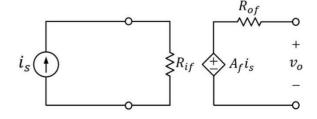


For the feedback to be negative,  $i_f$  must be of the **same** polarity as  $i_s$ 



Dr. Mohamed Refky


#### Shunt-Shunt Feedback Topology


#### The Ideal Case

In the ideal case, the feedback network has an **infinite** input is resistance and **infinite** output resistance

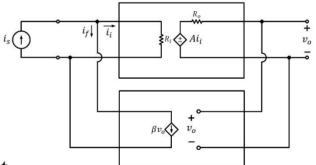
The feedback network **does not** load the basic amplifier

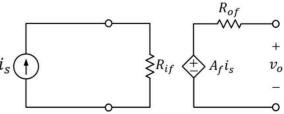
$$A_f = \frac{v_o}{i_s} = \frac{A}{1 + \beta A}$$





## Shunt-Shunt Feedback Topology

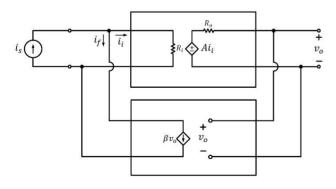

#### The Ideal Case

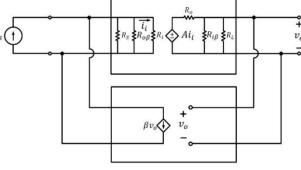

Due to the shunt connection at the input, the input resistance is given by

$$R_{if} = \frac{R_i}{1 + A\beta}$$

Due to the shunt connection at the output, the output resistance is given by

$$R_{of} = \frac{R_o}{1 + A\beta}$$




#### **Shunt-Shunt Feedback Topology**

#### The Practical Case

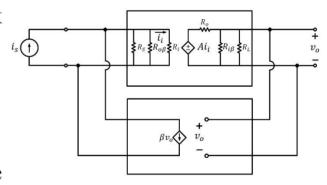
In the practical case, the feedback network loads the basic amplifier and affects the values of A,  $R_i$ , and  $R_o$ .





The finite source and load resistances also affect the values of A,  $R_i$ , and  $R_o$ .

#### Shunt-Shunt Feedback Topology


#### The Practical Case

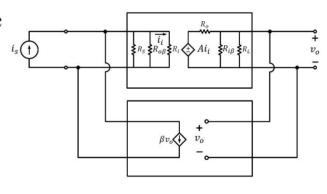
The gain of the feedback network is given by

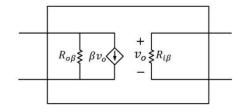
$$\beta = \frac{i_f}{v_o} \bigg|_{v_f = 0}$$

The input resistance of the feedback network is given by

$$R_{i\beta} = \frac{v_o}{i_o} \bigg|_{v_f = 0}$$







#### Shunt-Shunt Feedback Topology

#### The Practical Case

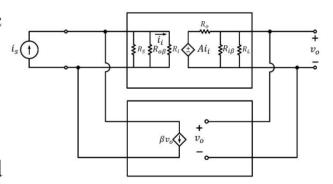
The output resistance of the feedback network is given by

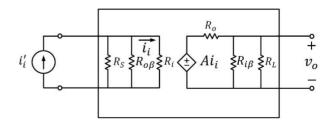
$$R_{o\beta} = \frac{v_{x}}{i_{x}} \bigg|_{v_{o}=0}$$





#### Shunt-Shunt Feedback Topology


#### The Practical Case


The gain of the modified basic amplifier is given by

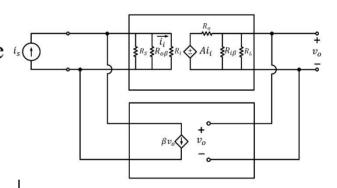
$$A_m = \frac{v_o}{i_i'}$$

 $R_{im}$  and  $R_{om}$  are determined from the modified basic amplifier circuit

$$R_{im} = \frac{v_i}{i_i} \qquad R_{om} = \frac{v_o}{i_o} \bigg|_{i_i'=0}$$






# Shunt-Shunt Feedback Topology The Practical Case

The overall gain of the is teedback amplifier is given by

$$A_f = \frac{A_m}{1 + A_m \beta}$$

The input resistance with feedback is given by

$$R_{if} = \frac{R_{im}}{1 + A_m \beta}$$

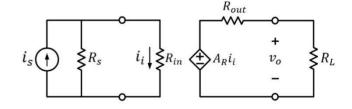


The output resistance with feedback is given by

$$R_{of} = \frac{R_{om}}{1 + A_m \beta}$$

#### Shunt-Shunt Feedback Topology

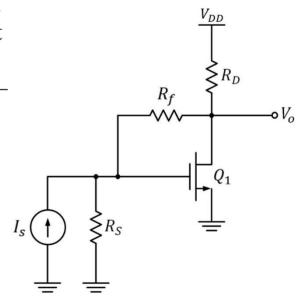

#### The Practical Case


The actual input resistance of the feedback amplifier is given by

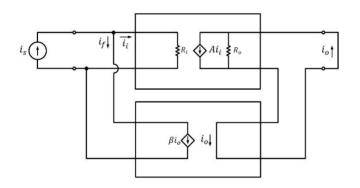
$$R_{in} = 1 / \left(\frac{1}{R_{if}} - \frac{1}{R_s}\right)$$

The actual output resistance of the feedback amplifier is given by

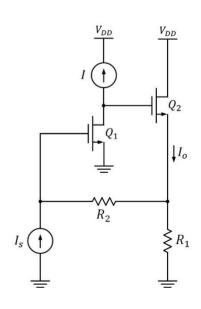
$$R_{out} = 1 / \left(\frac{1}{R_{of}} - \frac{1}{R_L}\right)$$







$$R_{of} = R_{out} / / R_L$$

## Example (1)


Analyze the shown amplifier obtain its gain, input resistance, and output resistance. Assume  $R_s \gg R_f$ 

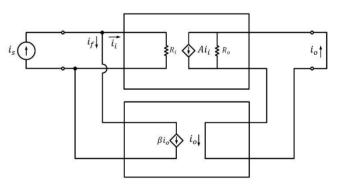


## **Shunt-Series Feedback Topology**



For the feedback to be negative,  $i_f$  must be of the **same** polarity as  $i_s$ 




## Shunt-Series Feedback Topology

#### The Ideal Case

In the ideal case, the feedback network has an **zero** input is resistance and **infinite** output resistance

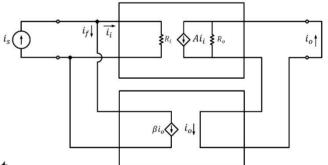
The feedback network **does not** load the basic amplifier

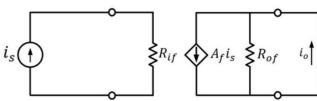
$$A_f = \frac{i_o}{i_s} = \frac{A}{1 + \beta A}$$





## Shunt-Series Feedback Topology

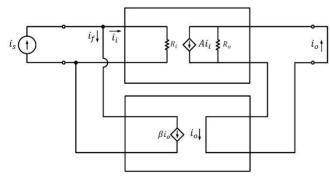

#### The Ideal Case

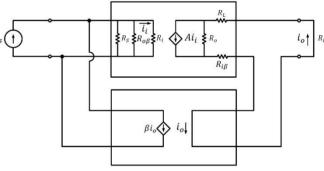

Due to the shunt connection at the input, the input resistance is given by

$$R_{if} = \frac{R_i}{1 + A\beta}$$

Due to the series connection at the output, the output resistanc is given by

$$R_{of} = R_o(1 + A\beta)$$




## **Shunt-Series Feedback Topology**

#### The Practical Case

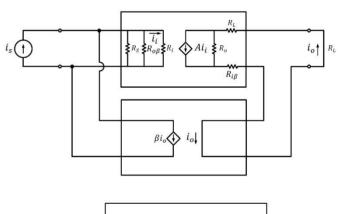
In the practical case, the feedback network loads the basic amplifier and affects the values of A,  $R_i$ , and  $R_o$ .

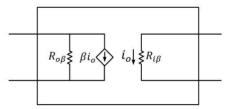




The finite source and load resistances also affect the values of A,  $R_i$ , and  $R_o$ .

## Shunt-Series Feedback Topology


#### The Practical Case

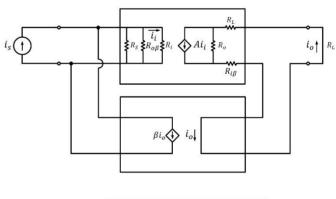

The gain of the feedback network is given by

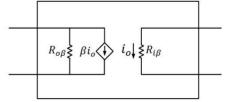
$$\beta = \frac{i_f}{i_o} \bigg|_{v_f = 0}$$

The input resistance of the feedback network is given by

$$R_{i\beta} = \frac{v_o}{i_o} \bigg|_{v_f = 0}$$







## **Shunt-Series Feedback Topology**

#### The Practical Case

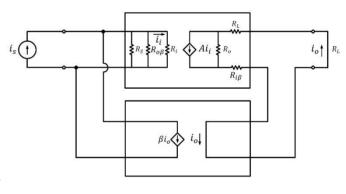
The output resistance of the feedback network is given by

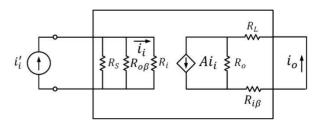
$$R_{o\beta} = \frac{v_f}{i_f} \bigg|_{i_o = 0}$$





#### **Shunt-Series Feedback Topology**


#### The Practical Case


The gain of the modified basic amplifier is given by

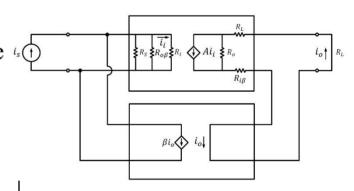
$$A_m = \frac{i_o}{i_i'}$$

 $R_{im}$  and  $R_{om}$  are determined from the modified basic amplifier circuit

$$R_{im} = \frac{v_i}{i_i'} \qquad R_{om} = \frac{v_o}{i_o} \bigg|_{i_i'=0}$$






# Shunt-Series Feedback Topology The Practical Case

The overall gain of the feedback amplifier is given by

$$A_f = \frac{A_m}{1 + A_m \beta}$$

The input resistance with feedback is given by

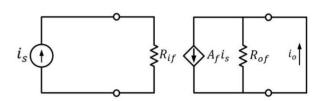
$$R_{if} = \frac{R_{im}}{1 + A_m \beta}$$

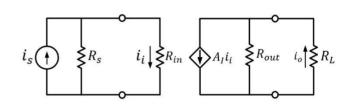


The output resistance with feedback is given by

$$R_{of} = R_{om}(1+A_m\beta)$$

#### **Shunt-Series Feedback Topology**

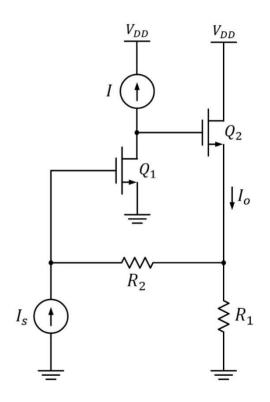

#### The Practical Case


The actual input resistance of the feedback amplifier is given by

$$R_{in} = 1 / \left(\frac{1}{R_{if}} - \frac{1}{R_s}\right)$$

The actual output resistance of the feedback amplifier is given by

$$R_{out} = R_{of} - R_L$$






$$R_{of} = R_{out} + R_L$$

## Example (2)

Analyze the shown amplifier obtain its gain, input resistance, and output resistance.

