Lecture 6 – Feedback Amplifier Part I

Dr. Mohamed Refky Amin

Electronics and Electrical Communications Engineering Department (EECE)

Cairo University

elcn201.eng@gmail.com

http://scholar.cu.edu.eg/refky/

Outline of this Lecture

- Feedback Amplifier
- Types of Feedback Amplifiers
- Voltage Amplifier
- Transconductance Amplifier

Introduction

Amplifiers are usually classified into two groups: open-loop amplifiers and closed-loop (feedback) amplifiers

In amplifier design, feedback is usually applied to achieve one or more of the following goals:

- Make the value of the gain less sensitive to variations in the values of circuit components
- Extend the Bandwidth
- Modify the input and output resistances

Introduction

The basic idea of feedback is to **trade off** gain for other desirable properties.

The most important parameter of any feedback amplifier is the **amount of feedback**.

The **amount of feedback** is factor by which the gain is reduced, by which the circuit is desensitized, by which the input resistance of a voltage amplifier is increased, by which the bandwidth is extended, and so on.

General Feedback Structure

The (—) sign at the bottom input of the summer makes the feedback a **negative** feedback.

The (+) sign at the bottom input of the summer makes the feedback a **positive** feedback.

The gain A is the **open-loop gain** of the basic amplifier

The gain β is the **feedback factor**

General Feedback Structure

The quantities *x* can represent either a voltage or a current signal

x_s	Supplied signal	
x_i	Input signal to the basic amplifier	
x_o	Output signal	
x_f	Feedback signal	

The main assumption in the general structure is that the gain A is **completely independent** on β

General Feedback Structure

The closed-loop gain of the feedback amplifier A_f , is given by

$$A_f = \frac{x_o}{x_s} = \frac{A}{1 + A\beta}$$

The quantity $A\beta$ is called the **loop gain**

The quantity $1 + A\beta$ is called the **amount of feedback**

General Feedback Structure

The closed-loop gain of the feedback amplifier A_f , is given by

$$A_f = \frac{x_o}{x_i} = \frac{A}{1 + A\beta}$$

If
$$A\beta \gg 1$$

$$A_f \simeq \frac{1}{\beta}$$

When the loop gain is large, the gain of the feedback amplifier is almost **independent** on A.

Properties of Negative Feedback Gain Desensitivity

$$A_{f} = \frac{A}{1 + A\beta} \rightarrow \frac{dA_{f}}{dA} = \frac{(1)(1 + A\beta) - (\beta)(A)}{(1 + A\beta)^{2}}$$
$$= \frac{1}{(1 + A\beta)^{2}} = \frac{A_{f}/A}{1 + A\beta}$$

$$\frac{dA_f}{A_f} = \frac{1}{1 + A\beta} \frac{dA}{A}$$

The percentage change in A_f is **smaller** than the percentage change in A by $1 + A\beta$.

Properties of Negative Feedback

Bandwidth Extension

Consider an amplifier A(s) whose high-frequency response is characterized by a single pole ω_h

$$A(s) = \frac{A_M}{1 + s/\omega_h}$$

The bandwidth of the amplifier is defined as the range of the frequency in which the gain do not fall more than 3dB from its maximum value

$$BW = \omega_h$$

Properties of Negative Feedback

Bandwidth Extension

Consider an amplifier A(s) whose high-frequency response is characterized by a single pole ω_h

$$A(s) = \frac{A_M}{1 + s/\omega_h} \rightarrow A_f(s) = \frac{A(s)}{1 + \beta A(s)}$$

$$= \frac{A_M/(1 + s/\omega_h)}{1 + \beta A_M/(1 + s/\omega_h)}$$

$$= \frac{A_M}{1 + \beta A_M + s/\omega_h}$$

Properties of Negative Feedback

Bandwidth Extension

Consider an amplifier A(s) whose high-frequency response is characterized by a single pole ω_h

$$A(s) = \frac{A_M}{1 + s/\omega_h}$$
 \to $A_f(s) = \frac{A_M/(1 + \beta A_M)}{1 + s/[\omega_h(1 + \beta A_M)]}$

The bandwidth is **increased** by a factor equal to $1 + \beta A_M$ while the midband gain is **decreased** by the same factor

The Gain-Bandwidth product of a single pole amplifier **remains** constant

Amplifier Types

Transresistance amplifier

Based on the input signal to be amplified and on the desired form of output signal, amplifiers are classified into four categories:

Transconductance amplifier

Dr. Mohamed Refky

Feedback Amplifier Types

Based on the input signal to be amplified and on the desired form of output signal, amplifiers are classified into four categories:

Amplifier Type	Input signal x_s, x_i, x_f	Output signal x_o
Voltage Amplifier	Voltage	Voltage
Current Amplifier	Current	Current
Transconductance Amplifier	Voltage	Current
Transresistance Amplifier	Current	Voltage

Dr. Mohamed Refky

Feedback Amplifier Types

Sampling and Mixing

Voltage signals are added or subtracted (mixed) in **series** fashion

Current signals are mixed in **parallel (shunt)** fashion

Voltage is sampled in a **parallel** (**shunt**) fashion

Current is sampled in a **series** fashion

Feedback Amplifier Types

Voltage Amplifier

 x_i , x_f and x_o , are voltage signals

The subtraction is done in series fashion and the sampling is done in shunt fashion

This feedback Topology is called **Series-Shunt** feedback

Feedback Amplifier Types

Current Amplifier

 x_i , x_f and x_o , are current signals

The subtraction is done in shunt fashion and the sampling is done in series fashion

This feedback Topology is called **Shunt-Series** feedback

Feedback Amplifier Types

Transconductance Amplifier

 x_i , and x_f are voltage signals while x_o is current signal

The subtraction is done in series fashion and the sampling is done in series fashion

This feedback Topology is called **Series-Series** feedback

Feedback Amplifier Types

Transresistance Amplifier

 x_i , and x_f are current signals while x_o is voltage signal

The subtraction is done in shunt fashion and the sampling is done in shunt fashion

This feedback Topology is called **Shunt-Shunt** feedback

Series-Shunt Feedback Topology

Series-Shunt Feedback Topology

The Ideal Case

In the ideal case, the feedback network has an **infinite** input resistance and **zero** output resistance

The feedback network **does not** load the basic amplifier

$$A_f = \frac{A}{1 + \beta A}$$

Series-Shunt Feedback Topology The Ideal Case

$$v_f = \beta v_o = A\beta v_i$$

$$v_i = v_s - v_f$$

$$v_i = v_s - A\beta v_i$$

$$v_s = v_i(1 + A\beta)$$

$$\frac{v_s}{i_i} = \frac{v_i}{i_i}(1 + A\beta)$$

$$R_{if} = R_i(1 + A\beta)$$

Series-Shunt Feedback Topology

The Ideal Case

$$i_{x} = \frac{v_{x} - Av_{i}}{R_{o}}$$

$$v_{f} = \beta v_{x}$$

$$v_{i} = -v_{f} = -\beta v_{x}$$

$$i_{x} = \frac{v_{x} + A\beta v_{x}}{R_{o}} = \frac{v_{x}(1 + A\beta)}{R_{o}}$$

$$R_{of} = \frac{v_{x}}{i_{x}} = \frac{R_{o}}{1 + A\beta}$$

Series-Shunt Feedback Topology

The Ideal Case

The series-mixing results in an increase in the input resistance $v_s \rightleftharpoons$ by a factor $1 + A\beta$

The shunt sampling at the output results in a decrease in the amplifier output resistance by $1 + A\beta$

Series connection **always increases** the resistance while parallel (shunt) connection **always decreases** the resistance.

Series-Shunt Feedback Topology

The Practical Case

In the practical case, the feedback network loads the basic amplifier and affects the values of A, R_i , and R_o .

The finite source and load resistances also affect the values of A, R_i , and R_o .

Series-Shunt Feedback Topology

The Practical Case

The gain of the feedback network is given by

$$\beta = \frac{v_f}{v_o} \bigg|_{i_f = 0}$$

The input resistance of the feedback network is given by

$$R_{i\beta} = \frac{v_o}{i_o} \bigg|_{i_f = 0}$$

Series-Shunt Feedback Topology

The Practical Case

The output resistance of the feedback network is given by

$$R_{o\beta} = \frac{v_{x}}{i_{x}} \bigg|_{v_{o}=0}$$

Series-Shunt Feedback Topology

The Practical Case

The gain of the modified basic amplifier is given by

$$A_m = \frac{v_o}{v_i'}$$

 R_{im} and R_{om} are determined from the modified basic amplifier circuit

$$R_{im} = \frac{v_i'}{i_i} \bigg|_{i_o = 0} \qquad R_{om} = \frac{v_o}{i_o} \bigg|_{v_i' = 0}$$

Series-Shunt Feedback Topology The Practical Case

The overall gain of the feedback amplifier is given by

$$A_f = \frac{A_m}{1 + A_m \beta}$$

The input resistance with feedback is given by

$$R_{if} = R_{im}(1 + A_m \beta)$$

The output resistance with feedback is given by

$$R_{of} = \frac{R_{om}}{1 + A_m \beta}$$

Series-Shunt Feedback Topology

The Practical Case

The actual input resistance of the feedback amplifier is given by

$$R_{in} = R_{if} - R_s$$

The actual output resistance of the feedback amplifier is given by

$$R_{out} = 1 / \left(\frac{1}{R_{of}} - \frac{1}{R_L}\right)$$

$$R_{of} = R_{out} / / R_L$$

Example (1)

Analyze the shown amplifier obtain its voltage gain, input resistance, and output resistance.

$$g_{m1} = g_{m2} = 4mA/V$$
,
 $R_{D1} = R_{D2} = 10K\Omega$,
 $R_1 = 1K\Omega$, $R_2 = 9K\Omega$.
Neglect r_o for Q_1 and Q_2

Series-Series Feedback Topology

For the feedback to be negative, v_f must be of the **same** polarity as v_s

Series-Series Feedback Topology

The Ideal Case

In the ideal case, the feedback network has an **zero** input resistance and **zero** output resistance

The feedback network **does not** load the basic amplifier

$$A_f = \frac{I_o}{V_s} = \frac{A}{1 + \beta A}$$

Series-Series Feedback Topology

The Ideal Case

Due to the series connection at the input, the input resistance is given by

$$R_{if} = R_i(1 + A\beta)$$

Due to the series connection at the output, the output resistance is given by

$$R_{of} = R_o(1 + A\beta)$$

Series-Series Feedback Topology

The Practical Case

In the practical case, the feedback network loads the basic amplifier and affects the values of A, R_i , and R_o .

The finite source and load resistances also affect the values of A, R_i , and R_o .

Series-Series Feedback Topology

The Practical Case

The gain of the feedback network is given by

$$\beta = \frac{v_f}{i_o} \bigg|_{i_f = 0}$$

The input resistance of the feedback network is given by

$$R_{i\beta} = \frac{v_o}{i_o} \bigg|_{i_f = 0}$$

Series-Series Feedback Topology

The Practical Case

The output resistance of the feedback network is given by

$$R_{o\beta} = \frac{v_x}{i_f} \bigg|_{i_0 = 0}$$

Series-Series Feedback Topology

The Practical Case

The gain of the modified basic amplifier is given by

$$A_m = \frac{i_o}{v_i'}$$

 R_{im} and R_{om} are determined from the modified basic amplifier circuit

$$R_{im} = \frac{v_i'}{i_i} \qquad R_{om} = \frac{v_o}{i_o} \bigg|_{v_i' = 0}$$

Series-Series Feedback Topology The Practical Case

The overall gain of the ^{v_s} teedback amplifier is given by

$$A_f = \frac{A_m}{1 + A_m \beta}$$

The input resistance with feedback is given by

$$R_{if} = R_{im}(1 + A_m \beta)$$

The output resistance with feedback is given by

$$R_{of} = R_{om}(1 + A_m \beta)$$

Series-Series Feedback Topology

The Practical Case

The actual input resistance of the feedback amplifier is given by

$$R_{in} = R_{if} - R_s$$

The actual output resistance of the feedback amplifier is given by

$$R_{out} = R_{of} - R_L$$

$$R_{of} = R_{out} + R_L$$

Example (2)

Analyze the shown amplifier obtain its voltage gain, input resistance, and output resistance.

