

Problem Set 3: Differential Amplifiers (Chapter 10)

Fundamental Concepts:

Problem 10.4

In the circuit of Fig. 10.60, $I_1 = I_0 \cos \omega t + I_0$ and $I_2 = -I_0 \cos \omega t + I_0$. Plot the waveforms at X and Y and determine their peak-to-peak swings and common-mode level.

Problem 10.5

In the circuit of Fig. 10.60, $I_1 = I_0 \cos \omega t + I_0$ and $I_2 = -I_0 \cos \omega t + I_0$. Plot the waveforms at X and Y and determine their peak-to-peak swings and common-mode level.

Also, plot the voltage at node P as a function of time.

Problem 10.10

Assuming $V_1 = V_0 \cos \omega t + V_0$ and $V_2 = -V_0 \cos \omega t + V_0$, plot V_P as a function of time for the circuits shown in Fig. 10.65. Assume I_T is constant.

BJT Differential Amplifier:

Problem 10.12

In Fig. 10.7, I_{EE} experiences a change of ΔI . How do V_X , V_Y , and $V_X - V_Y$ change?

Problem 10.13

Repeat Problem 12, but assuming that $R_{C1} = R_{C2} + \Delta R$. Neglect the Early effect.

Problem 10.15

In the circuit of Fig. 10.9(b), $R_C = 500 \Omega$. What is the maximum allowable value of I_{EE} if Q_2 must remain in the active region?

Problem 10.19

Suppose the input differential signal applied to a bipolar differential pair must not change the transconductance (and hence the bias current) of each transistor by more than 10%. From Eq. (10.58), determine the maximum allowable input.

$$I_{C2} = \frac{I_{EE}}{1 + \exp\frac{V_{in1} - V_{in2}}{V_T}}$$

In Example 10.9, $R_C = 500 \, \Omega$, $I_{EE} = 1 \, \text{mA}$, and $V_{CC} = 2.5 \, \text{V}$. Assume

$$V_{in1} = V_0 \sin \omega t + V_{CM}$$
 (10.214)

$$V_{in2} = -V_0 \sin \omega t + V_{CM}, \tag{10.215}$$

where $V_{CM} = 1$ V denotes the input common-mode level.

- (a) If $V_0 = 2$ mV, plot the output waveforms (as a function of time).
- (b) If $V_0 = 50$ mV, determine the time t_1 at which one transistor carries 95% of the tail current.

(c) Find the linear input range.

Problem 10.30

Consider the circuit shown in Fig. 10.68, where $I_{EE} = 2$ mA, $V_{A,n} = 5$ V $V_{A,p} = 4$ V. What value of $R_1 = R_2$ allows a differential voltage gain of 50?

Problem 10.32(a)

. Assuming perfect symmetry and $V_A < \infty$, compute the differential voltage gain of each stage depicted in Fig. 10.69.

Problem 10.33(a)

Assuming perfect symmetry and $V_A < \infty$, compute the differential voltage gain of each stage depicted in Fig. 10.70. You may need to compute the gain as $A_v = G_m R_{out}$

- (a) Find Adm, Adm-cm, Acm-dm, Acm and CMRR
- (b) Find Rin-dm, Rin-cm, Rout-dm, Rout-cm

Consider the differential pair illustrated in Fig. 10.71. Assuming perfect symmetry and $V_A = \infty$,

- (a) Determine the voltage gain.
- (b) Under what condition does the gain become *independent* of the tail currents? This is an example of a very linear circuit because the gain does not vary with the input or output signal levels.

MOS Differential Amplifier:

Problem 10.37

The MOS differential pair of Fig. 10.24 must be designed for an equilibrium overdrive of 200 mV. If $\mu_n C_{ox} = 100~\mu\text{A/V}^2$ and W/L = 20/0.18, what is the required value of I_{SS} ?

Calculate the common-mode input range assuming V_{eff} of I_{SS} is 150mV, V_{TH} =0.5V, V_{DD} =2V, and R_D =5k Ω . Find the linear input range and the output voltage swing.

Problem 10.41

Design an NMOS differential pair for a voltage gain of 5 and a power budget of 2 mW subject to the condition that the stage following the differential pair requires an input CM level of at least 1.6 V. Assume $\mu_n C_{ox} = 100~\mu\text{A}/\text{V}^2$, $\lambda = 0$, and $V_{DD} = 2$ V. Formulate the trade-off between V_{DD} and W/L for a given output common-mode level.

Explain what happens to the characteristics shown in Fig. 10.31 if (a) the gate oxide thickness of the transistor is doubled, (b) the threshold voltage is halved, (c) I_{SS} and W/L are halved.

Problem 10.51

A student who has a single-ended voltage source constructs the circuit shown in Fig. 10.75, hoping to obtain differential outputs. Assume perfect symmetry but $\lambda = 0$ for simplicity.

- (a) Viewing M_1 as a common-source stage degenerated by the impedance seen at the source of M_2 , calculate v_X in terms of v_{in} .
- (b) Viewing M_1 as a source follower and M_2 as a common-gate stage, calculate v_Y in terms of v_{in} .
- (c) Add the results obtained in (a) and (b) with proper polarities. If the voltage gain is defined as $(v_X v_Y)/v_{in}$, how does it compare with the gain of differentially-driven pairs?

Problem 10.52(c)

Calculate the differential voltage gain of the circuits depicted in Fig. 10.76. Assume perfect symmetry and $\lambda > 0$.

- (a) Find A_{dm}, A_{dm-cm}, A_{cm-dm}, A_{cm} and CMRR
- (b) Find Rin-dm, Rin-cm, Rout-dm, Rout-cm

Problem 10.53(b)

Calculate the differential voltage gain of the circuits depicted in Fig. 10.77. Assume perfect symmetry and $\lambda > 0$. You may need to compute the gain as $A_v = G_m R_{out}$ in some cases.

Cascode Differential Amplifies:

Problem 10.60

The cascode amplifier shown below is to operate as with a differential gain of 800. If Q_1 - Q_4 are identical and so are Q_5 - Q_8 , determine the minimum allowable Early voltage. Assume $\beta n = 2\beta p = 100$ and $V_{A,n} = 2V_{A,p}$

Hint:

- a) Show that $G_m \cong g_{m1}$
- b) Find R_{out} (Use the results of problem 7.4 in the Problem Set #2)

The MOS cascode amplifier shown must provide a differential voltage gain of 300. If W/L = $20\mu m/180nm$ for M_1 - M_4 and $\mu_n C_{OX}$ = $100\mu A/V^2$, determine the required tail current.

Assume $\lambda = 0.1 \text{V}^{-1}$.

Hint:

- a) Show that $G_m \cong g_{m1}$
- b) Find R_{out}

Common-Mode Rejection:

Problem 10.66

The bipolar differential pair depicted in Fig. 10.85 must exhibit a common-mode gain of less than 0.01. Assuming $V_A=\infty$ for Q_1 and Q_2 but $V_A<\infty$ for Q_3 , prove that

$$R_C I_C < 0.02(V_A + V_T).$$
 (10.218)

Problem 10.67

Compute the common-mode gain of the MOS differential pair shown in Fig. 10.86. Assume $\lambda = 0$ for M_1 and M_2 but $\lambda \neq 0$ for M_3 . Prove

$$A_{CM} = \frac{R_D I_{SS}}{\frac{2}{\lambda} + (V_{GS} - V_{TH})_{eq}},$$
(10.219)

where $(V_{GS} - V_{TH})_{eq}$ denotes the equilibrium overdrive of M_1 and M_2 .

Calculate the common-mode gain of the circuit depicted in Fig. 10.87. Assume $\lambda>0$, $g_m r_O\gg 1$, and use the relationship $A_v=-G_m R_{out}$.

Problem 10.70

Compute the common-mode-rejection ratio (**CMRR**) of the differential amplifier shown. For simplicity, neglect channel-length modulation in M1 and M2 but not in M3.

