Problem Set 2: MOS Amplifiers (Chapter 7) #### Problem 6.46 Consider the circuit depicted in Fig. 6.57, where M_1 and M_2 operate in saturation and exhibit channel-length modulation coefficients λ_n and λ_p , respectively. - (a) Construct the small-signal equivalent circuit and explain why M_1 and M_2 appear in "parallel." - (b) Determine the small-signal voltage gain of the circuit. - (c) Determine the output resistance. - (d) Find an expression for the output voltage swing (headroom)? #### **Problem 7.4** The circuit of Fig. 7.42 must be designed for a voltage drop of 200 mV across R_S . - (a) Calculate the minimum allowable value of W/L if M_1 must remain in saturation. - (b) What are the required values of R_1 and R_2 if the input impedance must be at least 30 k Ω . - (c) Show that resistance seen from drain of M_1 is given by $R_{seen}=R_S+r_0(1+g_mR_S)$ ## **Common-Source Topology:** ## Problem 7.19 We wish to design the stage of Fig. 7.55 for a voltage gain of 5 with $W/L \leq 20/0.18$. Determine the required value of R_D if the power dissipation must not exceed 1 mW. $$V_{DD} = 1.8 \text{ V}$$ $$R_D$$ $$V_{in} \sim V_{out}$$ #### Problem 7.24 The CS stage depicted in Fig. 7.58 must achieve a voltage gain of 15 at a bias current of 0.5 mA. If $\lambda_1=0.15~\rm V^{-1}$ and $\lambda_2=0.05~\rm V^{-1}$, determine the required value of $(W/L)_2$. # **Problem 7.32 (c, e)** Calculate the voltage gain of the circuits depicted in Fig. 7.62. Assume $\lambda = 0$. In the common-source stage depicted in Fig. 7.66, the drain current of M_1 is defined by the ideal current source I_1 and remains independent of R_1 and R_2 (why?). Suppose $I_1 = 1$ mA, $R_D = 500 \Omega$, $\lambda = 0$, and C_1 is very large. - (a) Compute the value of W/L to obtain a voltage gain of 5. - (b) Choose the values of R_1 and R_2 to place the transistor 200 mV away from the triode region while $R_1 + R_2$ draws no more than 0.1 mA from the supply. - (c) Find the value of the linear input range and headroom - (d) With the values found in (b), what happens if W/L is twice that found in (a)? Consider both the bias conditions (e.g., whether M_1 comes closer to the triode region) and the voltage gain. ## **Common-Gate Topology:** ## Problem 7.42 The CG stage depicted in Fig. 7.69 must provide an input impedance of 50 Ω and an output impedance of 500 Ω . Assume $\lambda = 0$. - (a) What is the maximum allowable value of I_D ? - (b) With the value obtained in (a), calculate the required value of W/L. - (c) Compute the voltage gain. - (d) Find the value of the linear input range and headroom The CG amplifier shown in Fig. 7.70 is biased by means of $I_1 = 1$ mA. Assume $\lambda = 0$ and C_1 is very large. - (a) What value of R_D places the transistor M_1 100 mV away from the triode region? - (b) What is the required W/L if the circuit must provide a voltage gain of 5 with the value of R_D obtained in (a)? # **Problem 7.44 (c)** Determine the voltage gain of each stage depicted in Fig. 7.71. Assume $\lambda = 0$. Consider the circuit of Fig. 7.72, where a common-source stage $(M_1 \text{ and } R_{D1})$ is followed by a common-gate stage $(M_2 \text{ and } R_{D2})$. - (a) Writing $v_{out}/v_{in} = (v_X/v_{in})(v_{out}/v_X)$ and assuming $\lambda = 0$, compute the overall voltage gain. - (b) Simplify the result obtained in (a) if $R_{D1} \to \infty$. Explain why this result is to be expected. #### Problem 7.48 Calculate the voltage gain of the stage depicted in Fig. 7.75. Assume $\lambda = 0$ and the capacitors are very large. # **Common-Drain (Source-Follower) Topology:** ## Problem 7.49 The source follower shown in Fig. 7.76 is biased through R_G . Calculate the voltage gain if W/L = 20/0.18 and $\lambda = 0.1 \text{ V}^{-1}$. Find the linear input range and headroom. The source follower depicted in Fig. 7.78 employs a current source. Determine the values of I_1 and W/L if the circuit must provide an output impedance less than 100Ω with $V_{GS} = 0.9$ V. Assume $\lambda = 0$. $$V_{\text{in}} \sim V_{DD} = 1.8 \text{ V}$$ $$V_{\text{in}} \sim V_{\text{out}}$$ ## **Problem 7.54** We wish to design the source follower of Fig. 7.79 for a voltage gain of 0.8 with a power budget of 3 mW. Compute the required value of W/L. Assume C_1 is very large and $\lambda = 0$. # **Problem 7.55 (e)** Determine the voltage gain of the stages shown in Fig. 7.80. Assume $\lambda \neq 0$. Consider the circuit shown in Fig. 7.81, where a source follower $(M_1 \text{ and } I_1)$ precedes a common-gate stage $(M_2 \text{ and } R_D)$. - (a) Writing $v_{out}/v_{in} = (v_X/v_{in})(v_{out}/v_X)$, compute the overall voltage gain. - (b) Simplify the result obtained in (a) if $g_{m1} = g_{m2}$. ## **Design** #### Problem 7.70 Design the CG stage shown in Fig. 7.92 such that it can accommodate an output swing of 500 mV $_{pp}$, i.e., V_{out} can fall below its bias value by 250 mV without driving M_1 into the triode region. Assume a voltage gain of 4 and an input impedance of 50 Ω . Select $R_S \approx 10/g_m$ and $R_1 + R_2 = 20 \text{ k}\Omega$. (Hint: since M_1 is biased 250 mV away from the triode region, we have $R_S I_D + V_{GS} - V_{TH} + 250 \text{ mV} = V_{DD} - I_D R_D$.) #### Problem 7.73 In the source follower of Fig. 7.95, M_2 serves as a current source. The circuit must operate with a power budget of 3 mW, a voltage gain of 0.9, and a minimum allowable output of 0.3V (i.e., M_2 must remain in saturation if $V_{DS2} \geq 0.3$ V). Assuming $\lambda = 0.1$ V $^{-1}$ for both transistors, design the circuit. $$V_{\text{in}} \sim V_{DD} = 1.8 \text{ V}$$ $$V_{\text{in}} \sim V_{\text{out}}$$ $$V_{\text{b}} \sim V_{\text{out}}$$