Problem Set 1: MOS (Biasing + Small-Signal Model)

Chapter 6 (MOS Device)

In the following problems, unless otherwise stated, assume $\mu_n C_{ox} = 200 \ \mu A/V^2$, $\mu_p C_{ox} = 100 \ \mu \text{A/V}^2$, and $V_{TH} = 0.4 \ \text{V}$ for NMOS devices and $-0.4 \ \text{V}$ for PMOS

Problem 6.24

In the Fig. 6.42, what is the minimum allowable value of V_{DD} if M_1 must not enter the triode region? Assume $\lambda = 0$.

Figure 6.42

Problem 6.31

An NMOS device operating in saturation with $\lambda = 0$ must provide a transconductance of $1/(50 \Omega)$.

- (a) Determine W/L if $I_D = 0.5$ mA.
- (b) Determine W/L if $V_{GS} V_{TH} = 0.5 \text{ V}$.
- (c) Determine I_D if $V_{GS} V_{TH} = 0.5$ V.

Problem 6.33 (b, d)

If $\lambda = 0.1 \text{ V}^{-1}$ and W/L = 20/0.18, construct the small-signal model of each of the circuits shown

Solve the DC operating point

Problem 6.38 (d)

Construct the small-signal model of the circuits depicted in Fig. 6.50. Assume all transistors operate in saturation and $\lambda \neq 0$.

Find an expression for Rin and Rout

Chapter 7 (Biasing Techniques & Input / Output Impedance)

Problem 7.1

In the circuit of Fig. 7.39, determine the maximum allowable value of W/L if M_1 must remain in saturation. Assume $\lambda = 0$.

Problem 7.5

Consider the circuit depicted in Fig. 7.43, where W/L=20/0.18. Assuming the current flowing through R_2 is one-tenth of I_{D1} , calculate the values of R_1 and R_2 so that $I_{D1}=0.5$ mA.

Consider the circuit shown in Fig. 7.52, where $(W/L)_1=10/0.18$ and $(W/L)_2=30/0.18$ if $\lambda=0.1~\rm V^{-1}$, calculate V_B

