Publications

Export 7 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D [E] F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
E
Essam, R. M., L. A. Ahmed, R. M. Abdelsalam, and A. S. El-Khatib, "Phosphodiestrase-1 and 4 inhibitors ameliorate liver fibrosis in rats: Modulation of cAMP/CREB/TLR4 inflammatory and fibrogenic pathways.", Life sciences, 2019. Abstract

BACKGROUND: Phosphodiestrase (PDE) enzymes are suggested to play a leading role in fibrogenesis of liver where studies showed the possible implication of PDE 1 & 4 in liver injury proposing them as possible targets for treating liver fibrosis.

AIM: The present study was designed to investigate, for the first time, the possible therapeutic effects of selective inhibitors of PDE-1 (vinpocetine) and PDE-4 (roflumilast) in liver fibrosis induced by diethylnitrosamine (DEN) in rats.

MAIN METHODS: Rats were given DEN (100 mg/kg, i.p.) once weekly for 6 weeks to induce liver fibrosis. Vinpocetine (10 mg/kg/day) or roflumilast (0.5 mg/kg/day) was then orally administered for 2 weeks.

KEY FINDINGS: Vinpocetine significantly suppressed the contents of hydroxyproline, transforming growth factor-beta 1 (TGF-β1), nuclear factor-kappa B (NF-κB) whereas roflumilast normalized them. Moreover, tumor necrosis factor-alpha (TNF-α) content and protein expressions of toll-like receptor 4 (TLR4) and tissue inhibitor of metalloproteinase-1 (TIMP-1) were markedly decreased whereas cAMP response element binding (CREB) protein expression was significantly elevated by both treatments. Additionally, vinpocetine and roflumilast up-regulated the gene expression of bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) receptor where roflumilast showed better results. PDE1 and 4 activities were inhibited by vinpocetine and roflumilast, respectively. The superior results offered by roflumilast could be related to the higher cAMP level obtained relative to vinpocetine.

SIGNIFICANCE: Our study manifested the up-regulation of PDE enzymes (1 & 4) in liver fibrosis and addressed the therapeutic role of vinpocetine and roflumilast as PDEIs through a cAMP-mediated TLR4 inflammatory and fibrogenic signaling pathways.

Elgohary, R., R. M. Abdelsalam, O. M. E. Abdel-Salam, M. M. Khattab, N. A. Salem, Z. A. El-Khyat, and F. A. Morsy, "Protective effect of cannabinoids on gastric mucosal lesions induced by water immersion restrain stress in rats.", Iranian journal of basic medical sciences, vol. 24, issue 9, pp. 1182-1189, 2021. Abstract

OBJECTIVES: This study aimed to determine the impact of cannabinoid agonists and antagonists on the mucosal lesion progress in the stomach induced by water-immersion restraint stress (WIRS).

MATERIALS AND METHODS: Rats subjected to WIRS for 4 hr were treated with Dimethyl sulfoxide (DMSO), CBR1 agonist (NADA, 1 mg/kg), CBR1 antagonist (Rimonabant, 1 mg/kg), CBR2 agonist (GW405833 1 mg/kg) or CBR2 antagonist (AM630, 1 mg/kg SC) 30 min before WIRS. Microscopic lesions, oxidative stress, inflammatory cytokines biomarkers, and (Myeloperoxidase) MPO in gastric tissues were determined.

RESULTS: Results indicated development of severe gastric lesions with a substantial increase in the contents of (nitric oxide) NO, (malondialdehyde) MDA, (interleukin-1 beta) IL-1β, MPO, (tumor necrosis factor-alpha) TNF-α, and a significant fall in the content of GSH and the activity of PON-1 after WIRS.

CONCLUSION: Treatment with NADA and AM630 protected gastric tissues against ulcers as demonstrated by a decrease in the contents of MDA, TNF-α, MPO, and IL-1β along with an increase in the content of PON-1 activity and GSH in the stomach tissues. On the other hand, treatment with SR141716A or GW405833 showed no protective effects on ulcers development. It seems that cannabinoids exert their antioxidant potential and anti-inflammatory effects against WIRS-induced gastric ulcers by activation of CB1R.

El-Tanbouly DM, Abdelsalam RM, Attia AS, and A. - A. MT., "Pretreatment with magnesium ameliorates lipopolysaccharide-induced liver injury in mice.", Pharmacol Rep., vol. 67(5), issue 26398385, pp. 914-20, 2015.
El-Safty, H., A. Ismail, R. M. Abdelsalam, A. E. El-Sahar, and M. A. Saad, "Dapagliflozin diminishes memory and cognition impairment in Streptozotocin induced diabetes through its effect on Wnt/β-Catenin and CREB pathway.", Brain research bulletin, vol. 181, pp. 109-120, 2022. Abstract

Diabetic neuropathy is a chronic condition that affects a significant number of individuals with diabetes. Streptozotocin injection intraperitoneally to rodents produces pancreatic islet β-cell destruction causing hyperglycemia, which affect the brain leading to memory and cognition impairment. Dapagliflozin may be able to reverse beta-cell injury and alleviate this impairment. This effect may be via neuroprotective effect or possible involvement of the antioxidant, and anti-apoptotic properties. Forty rats were divided into four groups as follows: The normal control group, STZ-induced diabetes group, STZ-induced diabetic rats followed by treatment with oral dapagliflozin group and normal rats treated with oral dapagliflozin. Behavioral tests (Object location memory task and Morris water maze) were performed. Serum biomarkers (blood glucose and insulin) were measured and then the homeostatic model assessment for insulin resistance (HOMA-IR) was calculated. In the hippocampus the followings were determined; calmodulin, ca-calmodulin kinase Ⅳ (CaMKIV), protein kinase A (PKA) and cAMP-responsive element-binding protein to determine the transcription factor CREB and its signaling pathway also Wnt signaling pathway and related parameters (WnT, B-catenin, lymphoid enhancer binding factor LEF, glycogen synthase kinase 3β). Moreover, nuclear receptor-related protein-1, acetylcholine and its hydrolyzing enzyme acetylcholine esterase, oxidative stress parameter malondialdehyde (MDA) and apoptotic parameter caspase-3 were determined. STZ was able to cause destruction to pancreatic β-cells which was reflected on glucose levels causing diabetes. Diabetic neuropathy was clear in the rats performing the behavioral tests. Memory and cognition parameters in the hippocampus were negatively affected. Oxidative stress and apoptotic parameter were elevated while the electrical activity was declined. Dapagliflozin was able to reverse the previously mentioned parameters and behavior. Thus, to say dapagliflozin significantly showed neuroprotective action along with antioxidant, and anti-apoptotic properties.

El-Ridy, M. S., A. A. Elbary, T. Essam, R. M. A. EL-Salam, and A. A. A. Kassem, "Niosomes as a potential drug delivery system for increasing the efficacy and safety of nystatin", Drug development and industrial pharmacy, vol. 37, no. 12: Taylor & Francis, pp. 1491–1508, 2011. Abstract
n/a
El-Ridy, M. S., A. A. Elbary, T. Essam, R. M. A. EL-Salam, and A. A. A. Kassem, "Niosomes as a potential drug delivery system for increasing the efficacy and safety of nystatin.", Drug development and industrial pharmacy, vol. 37, issue 12, pp. 1491-508, 2011 Dec. Abstract

Nonionic surfactant (NIS) vesicles (niosomes) formed from self-assembly of hydrated synthetic NIS monomers are capable of entrapping a variety of drugs and have been evaluated as an alternative to liposomes. Nystatin (NYS) is a polyene antifungal drug that has been used in the treatment of cutaneous, vaginal and oral fungal infections since the 1950s. The aim of this work is to encapsulate NYS in niosomes to obtain a safe and effective formula administered parenterally for neutropenic patients. NYS niosomes were prepared by the thin-film hydration method using Span 60 or Span 40 and cholesterol (CHOL). Stearylamine and dicetyl phosphate were added as the positive and negative charge-inducing agents (CIA), respectively. Two molar ratios were used, namely NIS/CHOL/CIA (1:1:0.1 and 2:1:0.25). Neutral and positively charged niosomes gave the highest encapsulation efficiencies. NYS niosomes were characterized using transmission electron microscopy, differential scanning calorimetry and dynamic light scattering. The release of neutral and negatively charged NYS niosomes was estimated, and it showed a slow sustained release profile. A 25-kGy γ-irradiation dose was sufficient to sterilize the investigated vesicles. NYS niosomes exerted less nephrotoxicity and hepatotoxicity in vivo, showed higher level of drug in vital organs and revealed pronounced efficacy in elimination of the fungal burden in experimental animals infected with Candida albicans compared with those treated with free NYS. Niosomal encapsulation thus provided means for parenteral administration of NYS, reducing its toxicity and making it a more active antifungal agent.

El Khashab, I. H., R. M. Abdelsalam, A. I. Elbrairy, and A. S. Attia, "Chrysin attenuates global cerebral ischemic reperfusion injury via suppression of oxidative stress, inflammation and apoptosis.", Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, vol. 112, pp. 108619, 2019 Feb 20. Abstract

Global cerebral ischemia is a leading cause of mortality worldwide. Several biomechanisms play a role in the pathology of cerebral ischemia reperfusion damage, such as oxidative stress, inflammation, apoptosis and excitotoxicity. Chrysin, a natural flavonoid with many important biological activities, was investigated in the present study for its possible neuroprotective properties in a rat model of global ischemia reperfusion. Male Wistar rats were allocated into three groups: sham-operated, ischemia/reperfusion, and chrysin (30 mg/kg) groups. All animals were subjected to ischemia for 15 min followed by reperfusion for 60 min, except for the sham-operated group. Rats were decapitated, then both hippocampi were rapidly excised to evaluate several biomarkers that reflect ischemic injury. The obtained results showed that pre-treatment with chrysin attenuated ischemia-induced oxidative stress by: (i) restoring the glutathione level; and (ii) depressing the levels/activities of thiobarbituric acid reactive substances, the hippocampal NADPH, as well as the xanthine oxidase. Exposure to chrysin also suppressed the inflammation accompanying the ischemia/reperfusion (I/R) damage, through increasing the interleukin-10 level, while decreasing the levels of both interleukin-6 and tumour necrosis factor-alpha. Moreover, an increase in Bcl2 and a decrease in both BAX and Hsp90 levels were recorded following chrysin exposure, which was also accompanied with elevated glutamate and aspartate levels. In conclusion, chrysin has demonstrated an anti-ischemic potential, through attenuation of the mechanisms underlying I/R injury. These data add to the knowledge on the significance of natural flavonoids as neuroprotective agents.

Tourism