Publications

Export 49 results:
Sort by: Author Title [ Type  (Desc)] Year
Miscellaneous
Abdelghany, T. M. M., R. M. Abdelsalam, A. S. Attia, and M. E. Elsayed, Ramipril could attenuate thioacetamide-induced liver fibrosis in rats, : The Federation of American Societies for Experimental Biology, 2016. Abstract
n/a
Journal Article
Mansour, H. M., A. A. A. Salama, R. M. Abdel-Salam, N. A. Ahmed, N. N. Yassen, and H. F. Zaki, "The anti-inflammatory and anti-fibrotic effects of tadalafil in thioacetamide-induced liver fibrosis in rats.", Canadian journal of physiology and pharmacology, vol. 96, issue 12, pp. 1308-1317, 2018 Dec. Abstract

Liver fibrosis is a health concern that leads to organ failure mediated via production of inflammatory cytokines and fibrotic biomarkers. This study aimed to explore the protective effect of tadalafil, a phosphodiesterase-5 inhibitor, against thioacetamide (TAA)-induced liver fibrosis. Fibrosis was induced by administration of TAA (200 mg/kg, i.p.) twice weekly for 6 weeks. Serum transaminases activities, liver inflammatory cytokines, fibrotic biomarkers, and liver histopathology were assessed. TAA induced marked histopathological changes in liver tissues coupled with elevations in serum transaminases activities. Furthermore, hepatic content of nitric oxide and tumor necrosis factor-alpha, interleukin-6, and interleukin-1 beta were elevated, together with a reduction of interleukin-10 in the liver. In addition, TAA increased hepatic contents of transforming growth factor-beta, hydroxyproline, alpha-smooth muscle actin, and gene expression of collagen-1. Pretreatment with tadalafil protected against TAA-induced liver fibrosis, in a dose-dependent manner, as proved by the alleviation of inflammatory and fibrotic biomarkers. The effects of tadalafil were comparable with that of silymarin, a natural antioxidant, and could be assigned to its anti-inflammatory and anti-fibrotic properties.

Shouman, M. M., R. M. Abdelsalam, M. M. Tawfick, S. A. Kenawy, and M. M. El-Naa, "Antisense Tissue Factor Oligodeoxynucleotides Protected Diethyl Nitrosamine/Carbon Tetrachloride-Induced Liver Fibrosis Through Toll Like Receptor4-Tissue Factor-Protease Activated Receptor1 Pathway.", Frontiers in pharmacology, vol. 12, pp. 676608, 2021. Abstract

Tissue factor (TF) is a blood coagulation factor that has several roles in many non-coagulant pathways involved in different pathological conditions such as angiogenesis, inflammation and fibrogenesis. Coagulation and inflammation are crosslinked with liver fibrosis where protease-activated receptor1 (PAR1) and toll-like receptor4 (TLR4) play a key role. Antisense oligodeoxynucleotides are strong modulators of gene expression. In the present study, antisense TF oligodeoxynucleotides (TFAS) was evaluated in treating liver fibrosis via suppression of TF gene expression. Liver fibrosis was induced in rats by a single administration of N-diethyl nitrosamine (DEN, 200 mg/kg; i. p.) followed by carbon tetrachloride (CCl4, 3 ml/kg; s. c.) once weekly for 6 weeks. Following fibrosis induction, liver TF expression was significantly upregulated along with liver enzymes activities and liver histopathological deterioration. Alpha smooth muscle actin (α-SMA) and transforming growth factor-1beta (TGF-1β) expression, tumor necrosis factor-alpha (TNF-α) and hydroxyproline content and collagen deposition were significantly elevated in the liver. Blocking of TF expression by TFAS injection (2.8 mg/kg; s. c.) once weekly for 6 weeks significantly restored liver enzymes activities and improved histopathological features along with decreasing the elevated α-SMA, TGF-1β, TNF-α, hydroxyproline and collagen. Moreover, TFAS decreased the expression of both PAR1 and TLR4 that were induced by liver fibrosis. In conclusion, we reported that blockage of TF expression by TFAS improved inflammatory and fibrotic changes associated with CCl4+DEN intoxication. In addition, we explored the potential crosslink between the TF, PAR1 and TLR4 in liver fibrogenesis. These findings offer a platform on which recovery from liver fibrosis could be mediated through targeting TF expression.

Badawi, H. M., R. M. Abdelsalam, O. M. E. Abdel-Salam, E. R. Youness, N. M. Shaffie, and E. - E. D. S. Eldenshary, "Bee venom attenuates neurodegeneration and motor impairment and modulates the response to L-dopa or rasagiline in a mice model of Parkinson's disease.", Iranian journal of basic medical sciences, vol. 23, issue 12, pp. 1628-1638, 2020. Abstract

OBJECTIVES: This study aimed to investigate the effect of bee venom, a form of alternative therapy, on rotenone-induced Parkinson's disease (PD) in mice. Moreover, the possible modulation by bee venom of the effect of L-dopa/carbidopa or rasagiline was examined.

MATERIALS AND METHODS: Rotenone (1.5 mg/kg, subcutaneously; SC) was administered every other day for two weeks and at the same time mice received the vehicle (DMSO, SC), bee venom (0.065, 0.13, and 0.26 mg/kg; intradermal; ID), L-dopa/carbidopa (25 mg/kg, intraperitoneal; IP), L-dopa/carbidopa+bee venom (0.13 mg/kg, ID), rasagiline (1 mg/kg, IP) or rasagiline+bee venom (0.13 mg/kg, ID). Then, wire hanging and staircase tests were performed and mice were euthanized and brains' striata separated. Oxidative stress biomarkers namely, malondialdehyde (MDA), nitric oxide (NO), reduced glutathione (GSH), paraoxonase-1 (PON-1), and total antioxidant capacity (TAC) were measured. Additionally, butyrylcholinesterase (BuChE), monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), and dopamine (DA) were evaluated. Brain histopathological changes and caspase-3- expression were done.

RESULTS: Bee venom significantly enhanced motor performance and inhibited rotenone-induced oxidative/nitrosative stress, observed as a reduction in both MDA and NO along with increasing GSH, PON-1, and TAC. Besides, bee venom decreased MCP-1, TNF-α, and caspase-3 expression together with an increase in BuChE activity and DA content.

CONCLUSION: Bee venom alone or in combination with L-dopa/carbidopa or rasagiline alleviated neuronal degeneration compared with L-dopa/carbidopa or rasagiline treatment only. Bee venom via its antioxidant and cytokine reducing potentials might be of value either alone or as adjunctive therapy in the management of PD.

Knuth, S., R. M. Abdelsalam, M. T. Khayyal, F. Schweda, J. Heilmann, M. G. Kees, G. Mair, F. Kees, and G. Jürgenliemk, "Catechol conjugates are in vivo metabolites of Salicis cortex.", Planta medica, vol. 79, issue 16, pp. 1489-94, 2013 Nov. Abstract

After oral administration of 100 mg/kg b. w. (235.8 µmol/kg) salicortin to Wistar rats, peak serum concentrations of 1.43 mg/L (13.0 µM) catechol were detected after 0.5 h in addition to salicylic acid by HPLC-DAD after serum processing with β-glucuronidase and sulphatase. Both metabolites could also be detected in the serum of healthy volunteers following oral administration of a willow bark extract (Salicis cortex, Salix spec., Salicaceae) corresponding to 240 mg of salicin after processing with both enzymes. In humans, the cmax (1.46 mg/L, 13.3 µM) of catechol was reached after 1.2 h. The predominant phase-II metabolite in humans and rats was catechol sulphate, determined by HPLC analysis of serum samples processed with only one kind of enzyme. Without serum processing with glucuronidase and sulphatase, no unconjugated catechol could be detected in human and animal serum samples. As catechol is described as an anti-inflammatory compound, these results may contribute to the elucidation of the mechanism of the action of willow bark extract.

Darwish, H. A., H. H. Arab, and R. M. Abdelsalam, "Chrysin alleviates testicular dysfunction in adjuvant arthritic rats via suppression of inflammation and apoptosis: comparison with celecoxib", Toxicology and applied pharmacology, vol. 279, no. 2: Elsevier, pp. 129–140, 2014. Abstract
n/a
Darwish, H. A., H. H. Arab, and R. M. Abdelsalam, "Chrysin alleviates testicular dysfunction in adjuvant arthritic rats via suppression of inflammation and apoptosis: Comparison with celecoxib.", Toxicology and applied pharmacology, vol. 279, issue 2, pp. 129-40, 2014 Sep 1. Abstract

Long standing rheumatoid arthritis (RA) is associated with testicular dysfunction and subfertility. Few studies have addressed the pathogenesis of testicular injury in RA and its modulation by effective agents. Thus, the current study aimed at evaluating the effects of two testosterone boosting agents; chrysin, a natural flavone and celecoxib, a selective COX-2 inhibitor, in testicular impairment in rats with adjuvant arthritis, an experimental model of RA. Chrysin (25 and 50mg/kg) and celecoxib (5mg/kg) were orally administered to Wistar rats once daily for 21days starting 1h before arthritis induction. Chrysin suppressed paw edema with comparable efficacy to celecoxib. More important, chrysin, dose-dependently and celecoxib attenuated the testicular injury via reversing lowered gonadosomatic index and histopathologic alterations with preservation of spermatogenesis. Both agents upregulated steroidogenic acute regulatory (StAR) mRNA expression and serum testosterone with concomitant restoration of LH and FSH. Furthermore, they suppressed inflammation via abrogation of myeloperoxidase, TNF-α and protein expression of COX-2 and iNOS besides elevation of IL-10. Alleviation of the testicular impairment was accompanied with suppression of oxidative stress via lowering testicular lipid peroxides and nitric oxide. With respect to apoptosis, both agents downregulated FasL mRNA expression and caspase-3 activity in favor of cell survival. For the first time, these findings highlight the protective effects of chrysin and celecoxib against testicular dysfunction in experimental RA which were mediated via boosting testosterone in addition to attenuation of testicular inflammation, oxidative stress and apoptosis. Generally, the 50mg/kg dose of chrysin exerted comparable protective actions to celecoxib.

El Khashab, I. H., R. M. Abdelsalam, A. I. Elbrairy, and A. S. Attia, "Chrysin attenuates global cerebral ischemic reperfusion injury via suppression of oxidative stress, inflammation and apoptosis.", Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, vol. 112, pp. 108619, 2019 Feb 20. Abstract

Global cerebral ischemia is a leading cause of mortality worldwide. Several biomechanisms play a role in the pathology of cerebral ischemia reperfusion damage, such as oxidative stress, inflammation, apoptosis and excitotoxicity. Chrysin, a natural flavonoid with many important biological activities, was investigated in the present study for its possible neuroprotective properties in a rat model of global ischemia reperfusion. Male Wistar rats were allocated into three groups: sham-operated, ischemia/reperfusion, and chrysin (30 mg/kg) groups. All animals were subjected to ischemia for 15 min followed by reperfusion for 60 min, except for the sham-operated group. Rats were decapitated, then both hippocampi were rapidly excised to evaluate several biomarkers that reflect ischemic injury. The obtained results showed that pre-treatment with chrysin attenuated ischemia-induced oxidative stress by: (i) restoring the glutathione level; and (ii) depressing the levels/activities of thiobarbituric acid reactive substances, the hippocampal NADPH, as well as the xanthine oxidase. Exposure to chrysin also suppressed the inflammation accompanying the ischemia/reperfusion (I/R) damage, through increasing the interleukin-10 level, while decreasing the levels of both interleukin-6 and tumour necrosis factor-alpha. Moreover, an increase in Bcl2 and a decrease in both BAX and Hsp90 levels were recorded following chrysin exposure, which was also accompanied with elevated glutamate and aspartate levels. In conclusion, chrysin has demonstrated an anti-ischemic potential, through attenuation of the mechanisms underlying I/R injury. These data add to the knowledge on the significance of natural flavonoids as neuroprotective agents.

A.M., G., E. A. H.S., and A. R.M., "CILOSTAZOL HEPATOPROTECTIVE EFFECT AGAINST ISCHEMIA/REPERFUSION: INVOLVEMENT OF GSK-3β, CYCLIN D1 and WNT/β-CATENIN PATHWAY", Journal of Pharmacology Research, vol. 4, issue 1, pp. 75-81, 2014.
El-Safty, H., A. Ismail, R. M. Abdelsalam, A. E. El-Sahar, and M. A. Saad, "Dapagliflozin diminishes memory and cognition impairment in Streptozotocin induced diabetes through its effect on Wnt/β-Catenin and CREB pathway.", Brain research bulletin, vol. 181, pp. 109-120, 2022. Abstract

Diabetic neuropathy is a chronic condition that affects a significant number of individuals with diabetes. Streptozotocin injection intraperitoneally to rodents produces pancreatic islet β-cell destruction causing hyperglycemia, which affect the brain leading to memory and cognition impairment. Dapagliflozin may be able to reverse beta-cell injury and alleviate this impairment. This effect may be via neuroprotective effect or possible involvement of the antioxidant, and anti-apoptotic properties. Forty rats were divided into four groups as follows: The normal control group, STZ-induced diabetes group, STZ-induced diabetic rats followed by treatment with oral dapagliflozin group and normal rats treated with oral dapagliflozin. Behavioral tests (Object location memory task and Morris water maze) were performed. Serum biomarkers (blood glucose and insulin) were measured and then the homeostatic model assessment for insulin resistance (HOMA-IR) was calculated. In the hippocampus the followings were determined; calmodulin, ca-calmodulin kinase Ⅳ (CaMKIV), protein kinase A (PKA) and cAMP-responsive element-binding protein to determine the transcription factor CREB and its signaling pathway also Wnt signaling pathway and related parameters (WnT, B-catenin, lymphoid enhancer binding factor LEF, glycogen synthase kinase 3β). Moreover, nuclear receptor-related protein-1, acetylcholine and its hydrolyzing enzyme acetylcholine esterase, oxidative stress parameter malondialdehyde (MDA) and apoptotic parameter caspase-3 were determined. STZ was able to cause destruction to pancreatic β-cells which was reflected on glucose levels causing diabetes. Diabetic neuropathy was clear in the rats performing the behavioral tests. Memory and cognition parameters in the hippocampus were negatively affected. Oxidative stress and apoptotic parameter were elevated while the electrical activity was declined. Dapagliflozin was able to reverse the previously mentioned parameters and behavior. Thus, to say dapagliflozin significantly showed neuroprotective action along with antioxidant, and anti-apoptotic properties.

Badran, M. M., M. A. Hakeem, S. M. Abuel-Maaty, A. El-Malah, and R. M. Abdelsalam, "Design, synthesis, and molecular-modeling study of aminothienopyridine analogues of tacrine for Alzheimer's disease.", Archiv der Pharmazie, vol. 343, issue 10, pp. 590-601, 2010 Oct. Abstract

2-Amino-3-cyanothiophenes were successfully condensed with a number of cycloalkanones to afford tacrine analogues in a one-step reaction mediated with Lewis acid. The newly synthesized compounds have been tested for their ability to inhibit acetylcholine esterase (AChE) activity using tacrine as standard drug. Some of the tested compounds showed moderate inhibitory activity in comparison with tacrine, especially compounds 6a which displayed the highest inhibitory activity. Furthermore, molecular-modeling studies were performed in order to rationalize the obtained biological results.

Al-Ghobashy, M. A., A. N. ElMeshad, R. M. Abdelsalam, M. M. Nooh, M. Al-Shorbagy, and G. Laible, "Development and Pre-Clinical Evaluation of Recombinant Human Myelin Basic Protein Nano Therapeutic Vaccine in Experimental Autoimmune Encephalomyelitis Mice Animal Model.", Scientific reports, vol. 7, pp. 46468, 2017 Apr 20. Abstract

Recombinant human myelin basic protein (rhMBP) was previously produced in the milk of transgenic cows. Differences in molecular recognition of either hMBP or rhMBP by surface-immobilized anti-hMBP antibodies were demonstrated. This indicated differences in immunological response between rhMBP and hMBP. Here, the activity of free and controlled release rhMBP poly(ε-caprolactone) nanoparticles (NPs), as a therapeutic vaccine against multiple sclerosis (MS) was demonstrated in experimental autoimmune encephalomyelitis (EAE) animal model. Following optimization of nanoformulation, discrete spherical, rough-surfaced rhMBP NPs with high entrapment efficiency and controlled release pattern were obtained. Results indicated that rhMBP was loaded into and electrostatically adsorbed onto the surface of NPs. Subcutaneous administration of free or rhMBP NPs before EAE-induction reduced the average behavioral score in EAE mice and showed only mild histological alterations and preservation of myelin sheath, with rhMBP NPs showing increased protection. Moreover, analysis of inflammatory cytokines (IFN-γ and IL-10) in mice brains revealed that pretreatment with free or rhMBP NPs significantly protected against induced inflammation.

IN CONCLUSION: i) rhMBP ameliorated EAE symptoms in EAE animal model, ii) nanoformulation significantly enhanced efficacy of rhMBP as a therapeutic vaccine and iii) clinical investigations are required to demonstrate the activity of rhMBP NPs as a therapeutic vaccine for MS.

Seif-El-Nasr, M., A. S. Atia, and R. M. Abdelsalam, "Effect of MAO-B inhibition against ischemia-induced oxidative stress in the rat brain", Arzneimittelforschung, vol. 58, no. 04: Editio Cantor Verlag, pp. 160–167, 2008. Abstract
n/a
Seif-El-Nasr, M., A. S. Atia, and R. M. Abdelsalam, "Effect of MAO-B inhibition against ischemia-induced oxidative stress in the rat brain. Comparison with a rational antioxidant.", Arzneimittel-Forschung, vol. 58, issue 4, pp. 160-7, 2008. Abstract

An increasing number of reports suggest the involvement of oxidative stress in neurodegenerative diseases where the increased formation of reactive oxygen species (ROS) leads to neuronal damage and cell death. Dopamine may contribute to neurodegenerative disorders such as Parkinson's disease and ischemia/reperfusion-induced damage. Monoamine oxidase (MAO) enzyme (particularly MAO-B) is responsible for metabolizing dopamine and plays an important role in oxidative stress through altering the redox state of neuronal and glial cells. MAO participates in the generation of hydroxyl radicals during ischemia/reperfusion. This suggests the possible use of MAO inhibitors as neuroprotective agents for treating ischemic injury. The protective effect of deprenyl (N-methyl-N-(1-methyl-2-phenyl-ethyl)-prop-2-yn-1-amine, CAS 14611-51-9) (2 and 10 mg/kg), a MAO-B inhibitor, and beta-carotene (10 and 20 mg/kg), a natural antioxidant, was examined in a rat model of cerebral ischemia. Ischemia was induced in rats by bilateral carotid artery occlusion for 1 h followed by declamping for another hour. The effect of the drugs on the brain activity of lactate dehydrogenase (LDH) and some of the oxidative stress biomarkers such as brain activity of superoxide dismutase (SOD) and catalase (CAT) enzymes and brain malondialdehyde (MDA) content was determined. In addition, the content of catecholamines such as noradrenaline (NA) and dopamine (DA) was determined. Deprenyl decreased the ischemia-induced elevation of LDH activity and MDA content and normalized the SOD activity. In addition, deprenyl increased the CAT activity back to normal, and increased the noradrenaline and dopamine content in the brain of rats. Beta-carotene administration ameliorated the effect of ischemia followed by reperfusion (I/R) demonstrated as decreasing the LDH activity and MDA content and by increasing the SOD activity. The drug also increased CAT activity in the brain of rats. However, beta-carotene did not alter the NA and DA content. These results indicate that deprenyl protected the rat brains against the ischemia-induced oxidative damage, an effect which might be explained through multiple mechanisms, possibly due to reduction of dopamine catabolism with a subsequent increased activity on dopaminergic D2 receptors and suppressing the action of ROS as well.

Abdallah, D. M., N. N. Nassar, and R. M. Abd-El-Salam, "Glibenclamide ameliorates ischemia-reperfusion injury via modulating oxidative stress and inflammatory mediators in the rat hippocampus.", Brain research, vol. 1385, pp. 257-62, 2011 Apr 18. Abstract

Stroke remains a debilitating disease with high incidence of morbidity and mortality, where many reports provide promising venues for prevention/treatment of such ailment. Glibenclamide, a selective blocker of KATP channels, was reported to protect against ischemia and ischemia-reperfusion (IR) injury in several experimental models. Hence, the present study aimed to investigate the possible involvement of free radicals as well as inflammatory and anti-inflammatory mediators in the hippocampus of rats exposed to IR. To this end, male Wistar rats were divided into 3 groups: group I served as sham operated controls; group II was subjected to 15 min ischemia by occlusion of both common carotid arteries, followed by 60 min reperfusion; group III was injected with glibenclamide (1mg/kg, i.p.) 10 min before ischemic-reperfusion injury. IR increased lipid peroxides, myeloperoxidase activity, TNF-α and PGE(2), while decreasing glutathione, total antioxidant capacity, nitric oxide and IL-10 levels in the hippocampus. Glibenclamide reversed all the former alterations, thus highlighting a potential therapeutic utility for this sulphonyl urea in IR brain injury via modulating oxidative stress and inflammatory mediators.

Safar, M. M., and R. M. Abdelsalam, "H2S donors attenuate diabetic nephropathy in rats: Modulation of oxidant status and polyol pathway", Pharmacological Reports, vol. 67 (2015), issue 25560570, pp. 17–23, 2015.
Mousavi, M. P. S., M. K. Abd El-Rahman, A. M. Mahmoud, R. M. Abdelsalam, and P. Bühlmann, "In Situ Sensing of the Neurotransmitter Acetylcholine in a Dynamic Range of 1 nM to 1 mM.", ACS sensors, 2018 Nov 19. Abstract

The neurotransmitter acetylcholine (ACh) plays a key role in the pathophysiology of brain disorders such as Alzheimer's disease. Understanding the dynamics of ACh concentration changes and kinetics of ACh degradation in the living brain is crucial to unravel the pathophysiology of such diseases and the rational design of therapeutics. In this work, an electrochemical sensor capable of dynamic, label-free, selective, and in situ detection of ACh in a range of 1 nM to 1 mM (with temporal resolution of less than one second) was developed. The sensor was employed for the direct detection of ACh in artificial cerebrospinal fluid and rat brain homogenate, without any prior separation steps. A potentiometric receptor-doped ion-selective electrode (ISE) with selectivity for ACh was designed by taking advantage of the positive charge of ACh. The dynamic range, limit of detection (LOD), and the selectivity of the sensor were optimized stepwise by (i) screening of hydrophobic biomimetic calixarenes to identify receptors that strongly bind to ACh based on shape-selective multitopic recognition, (ii) doping of the ISE sensing membrane with an ACh-binding hydrophobic calixarene to enable selective detection of ACh in complex matrices, (iii) utilizing a hydrophilic calixarene in the inner filling solution of the ISE to buffer the concentration of ACh and, thereby, lower the LOD of the sensor, and (iv) introducing a surface treatment step prior to the measurement by placing the sensor for ∼1 min in a solution of a hydrophilic calixarene to lower the LOD of the sensor even further.

Abo-Zalam, H. B., R. M. Abdelsalam, R. F. Abdel-Rahman, M. F. Abd-Ellah, and M. M. Khattab, "In Vivo Investigation of the Ameliorating Effect of Tempol against MIA-Induced Knee Osteoarthritis in Rats: Involvement of TGF-β1/SMAD3/NOX4 Cue.", Molecules (Basel, Switzerland), vol. 26, issue 22, 2021. Abstract

Osteoarthritis (OA) is a complex disease characterized by structural, functional, and metabolic deteriorations of the whole joint and periarticular tissues. In the current study, we aimed to investigate the possible effects of tempol on knee OA induced by the chemical chondrotoxic monosodium iodoacetate (MIA) which closely mimics both the pain and structural changes associated with human OA. Rats were administrated oral tempol (100 mg/kg) one week post-MIA injection (3 mg/50 μL saline) at the right knee joints for 21 consecutive days. Tempol improved motor performance and debilitated the MIA-related radiological and histological alterations. Moreover, it subsided the knee joint swelling. Tempol decreased the cartilage degradation-related biomarkers as matrix metalloproteinase-13, bone alkaline phosphatase (bone ALP), and fibulin-3. The superoxide dismutase mimetic effect of tempol was accompanied by decreased NADPH oxidase 4 (NOX4), inflammatory mediators, nuclear factor-kappa B (NF-κB), over-released transforming growth factor-β1 (TGF-β1). Tempol decreased the expression of chemokine (C-C motif) ligand 2 (CCL2). On the molecular level, tempol reduced the phosphorylated protein levels of p38 mitogen-activated protein kinase (MAPK), and small mother against decapentaplegic 3 homologs (SMAD3). These findings suggest the promising role of tempol in ameliorating MIA-induced knee OA in rats via collateral suppression of the catabolic signaling cascades including TGF-β1/SMAD3/NOX4, and NOX4/p38MAPK/NF-κB and therefore modulation of oxidative stress, catabolic inflammatory cascades, chondrocyte metabolic homeostasis.

Asaad, M., R. M. Abdelsalam, S. A. Kenawy, and A. S. Attia, "Ischemic preconditioning and postconditioning alleviates hippocampal tissue damage through abrogation of apoptosis modulated by oxidative stress and inflammation during transient global cerebral ischemia-reperfusion in rats.", Chemico-biological interactions, vol. 232, pp. 21-9, 2015 May 05. Abstract

INTRODUCTION: It has been argued recently that ischemic preconditioning (IPre) and postconditioning (IPost) have beneficial effects in many ischemic disorders however; their effects on global ischemia/reperfusion (I/R) are poorly understood. Thus, the present work aimed to study the possible mechanisms underlying the neuroprotective effects of IPre and IPost.

METHODS: Animals were randomly allocated into 4 groups (n = 30): (1) Sham operated (SO); (2) I/R group, animals were subjected to 15 min global ischemia followed by 60 min reperfusion; (3) IPre, animals were subjected to 3 episodes of 5 min ischemia followed by 10 min reperfusion before I/R; (4) IPost, animals were subjected to three episodes of 10s of ischemia and 10s of reperfusion after the period of ischemia followed by a 60 min reperfusion period. Lactate dehydrogenase activity, oxidative stress, inflammatory and apoptotic biomarkers, as well as neurotransmitters, infarct size and histopathological examination were assessed.

RESULTS: I/R induced hippocampal damage through increasing oxidative stress, inflammatory, excitotoxic and apoptotic markers as well as lactate dehydrogenase activity and infarct size. Both, IPre and IPost attenuated most markers induced by I/R.

CONCLUSIONS: IPre and IPost neuroprotective effects can be explained through their anti-oxidant, anti-inflammatory and anti-apoptotic mechanisms.

Hussien, Y. A., D. I. N. A. F. Mansour, S. A. Nada, S. S. Abd El-Rahman, R. M. Abdelsalam, A. S. Attia, and D. M. El-Tanbouly, "Linagliptin attenuates thioacetamide-induced hepatic encephalopathy in rats: Modulation of C/EBP-β and CX3CL1/Fractalkine, neuro-inflammation, oxidative stress and behavioral defects.", Life sciences, vol. 295, pp. 120378, 2022. Abstract

The degree of neuroinflammation is correlated mainly with cognitive and motor dysfunctions associated with hepatic encephalopathy (HE). The current study was conducted to explore the possible protective potential of the antidiabetic drug; linagliptin (LNG; 10 or 20 mg/kg) against HE induced by thioacetamide (TAA) in rats. Animals received two consecutive intraperitoneal injections of TAA (200 mg/kg) on alternate days. Neurobehavioral tests were performed 24 h after the last injection, and rats were sacrificed 24 h later (48 h). The higher LNG dose more effectively protected against TAA-induced changes. Administration of LNG for 15 days before TAA notably mitigated TAA-induced acute liver injury and HE, as verified by the marked improvement in motor coordination, locomotor activity, and cognition function. LNG maintained both brain and liver weight indices and retracted the hyperammonemia with a prominent suppression in liver transaminases. This was accompanied by an evident modulation of hepatic and hippocampal oxidative stress markers; GSH and MDA. LNG attenuated both liver and hippocampal pro-inflammatory cytokine; IL-1β while augmented the anti-inflammatory one; IL-10. It noticeably reduced hepatic and hippocampal COX-2 and TNF-α and maintained hepatic and brain architectures. It also induced a marked decrease in the inflammation-regulated transcription factor, C/EBP-β, with a profound increase in hippocampi's anti-inflammatory chemokine, CX3CL1/Fractalkine. LNG modulated TAA-induced disturbances in hippocampal amino acids; glutamate, and GABA with a significant increase in hippocampal BDNF. In conclusion, the regulatory effect of LNG on neuroinflammatory signaling underlines its neuroprotective effect against progressive encephalopathy accompanying acute liver injury.

Abd-ElRaouf, A., A. S. Nada, N. E. - D. A. Mohammed, H. A. Amer, S. S. Abd-ElRahman, R. M. Abdelsalam, and H. A. Salem, "Low dose gamma irradiation attenuates cyclophosphamide-induced cardiotoxicity in rats: role of NF-κB signaling pathway.", International journal of radiation biology, vol. 97, issue 5, pp. 632-641, 2021. Abstract

PURPOSE: Cyclophosphamide (Cyp) is one of the most commonly used, wide spectrum chemotherapeutic agents. Cyp has multi-organ toxicities that are dose limiting, thus it's mostly used in chemotherapeutic combinations. Radiation is well known as a hazardous sort of energy, recent studies are interested in studying the beneficial therapeutic effects of low-dose gamma radiation. This study examined the protective effect of two different doses/dose-rates of irradiation either alone or combined with telmisartan against Cyp-induced cardiotoxicity.

MATERIALS AND METHODS: Rats were divided into seven groups; (1): Control, (2): Cyp, (3-4): 0.05 Gy low dose rate (LDR) irradiation, 0.25 Gy high dose rate (HDR) irradiation, respectively, prior to Cyp dose, (5-7): telmisartan either alone or with 0.05 Gy LDR-irradiation or 0.25 Gy HDR-irradiation, respectively, prior to Cyp dose. The current investigation studied the effect of Cyp alone or combined with different treatment regimens on serum cTn-I and LDH, nuclear factor-κB (NF-κB) pathway (p65/IκB/IKK-α/IKK-ß) in the myocardium. Pro-inflammatory cytokines IL-1ß, IL-6 and TNF-α were assessed in addition to histopathological examination of the heart.

RESULTS: Low-dose irradiation attenuated cardiac enzymes, pro-inflammatory cytokines, NF-κB content, and histology, in both low and HDRs. Furthermore, the combination of low-dose irradiation with telmisartan (an angiotensin-II receptor type-1 blocker and a known cardio-protective drug) offered the best histological results.

CONCLUSIONS: Low-dose irradiation-induced amelioration is partially but not completely through canonical activation of NF-κB, and may have another atypical pathway. While telmisartan probably ameliorates NF-κB totally through canonical pathway.

Salama, R. A. A., R. M. Abdelsalam, O. M. E. Abdel-Salam, M. M. Khattab, N. A. Salem, Z. A. El-Khyat, F. A. Morsy, and E. - E. D. S. Eldenshary, "Modulation of gastric acid secretion by cannabinoids in rats.", Journal of biochemical and molecular toxicology, pp. e22256, 2018 Nov 01. Abstract

The current study aimed to evaluate the role of cannabinoid receptors in the regulation of gastric acid secretion and oxidative stress in gastric mucosa. To fulfill this aim, gastric acid secretion stimulated with histamine (5 mg/kg, subcutaneous [SC]), 2-deoxy- d-glucose (D-G) (200 mg/kg, intravenous) or -carbachol (4 μg/kg, SC) in the 4-hour pylorus-ligated rats. The CB1R agonist ( N-arachidonoyl dopamine, 1 mg/kg, SC) inhibited gastric acid secretion stimulated by D-G and carbachol but not in histamine, reduced pepsin content, and increased mucin secretion. Furthermore, it decreased malondialdehyde (MDA) and nitric oxide (NO) contents with an increase in glutathione (GSH) and paraoxonase 1 (PON-1). Meanwhile, CB2R antagonist (AM630, 1 mg/kg, SC) inhibited gastric acid secretion stimulated by D-G and reduced MDA and NO contents with an increase in GSH and PON-1. Meanwhile, CB1R antagonist rimonabant or CB2R agonist GW 405833 had no effect on stimulated gastric acid secretion. Therefore, both CB1R agonist and CB2R antagonist may exert antisecretory and antioxidant potential in the stomach.

Asaad, M., R. M. Abdelsalam, S. A. Kenawy, and A. S. Attia, "Montelukast, a cysteinyl leukotriene receptor-1 antagonist protects against hippocampal injury induced by transient global cerebral ischemia and reperfusion in rats.", Neurochemical research, vol. 40, issue 1, pp. 139-50, 2015 Jan. Abstract

Cysteinyl leukotrienes (CysLTs) are potent pro-inflammatory and immune modulating lipid mediators involved in inflammatory diseases and were boosted in human brain after acute phase of cerebral ischemia. The antagonism of CysLTs receptors may offer protection against ischemic damage. Therefore it seemed interesting to study the possible neuroprotective effect of Montelukast, a CysLTR1 antagonist in global cerebral ischemia/reperfusion (IR) injury in rats. Global cerebral ischemia-reperfusion was induced by bilateral carotid artery occlusion for 15 min followed by 60 min reperfusion period. Animals were randomly allocated into three groups (n = 30 per group): Sham operated, I/R control and rats treated with montelukast (0.5 mg/kg, po) daily for 7 days then I/R was induced 1 h after the last dose of montelukast. After reperfusion rats were killed by decapitation, brains were removed and both hippocampi separated and the following biochemical parameters were estimated; lactate dehydrogenase activity, oxidative stress markers (lipid peroxides, nitric oxide and reduced glutathione), inflammatory markers (myeloperoxidase, tumor necrosis factor-alpha, nuclear factor kappa-B, interleukin-6 and interleukin-10), apoptotic biomarkers (caspase 3 and cytochrome C), neurotransmitters (glutamate, gamma aminobutyric acid), Cys-LTs contents and CysLT1 receptor expression; as well as total brain infarct size and histopathological examination of the hippocampus were assessed. Montelukast protected hippocampal tissue by reducing oxidative stress, inflammatory and apoptotic markers. Furthermore, it reduced glutamate and lactate dehydrogenase activity as well as infarct size elevated by I/R. These results were consistent with the histopathological findings. Montelukast showed a neuroprotective effects through antioxidant, anti-inflammatory and antiapoptotic mechanisms.

Mahfouz, M. M., R. M. Abdelsalam, M. A. Masoud, H. A. Mansour, O. A. Ahmed-Farid, and S. A. Kenawy, "The neuroprotective effect of mesenchymal stem cells on an experimentally induced model for multiple sclerosis in mice.", Journal of biochemical and molecular toxicology, vol. 31, issue 9, 2017 Sep. Abstract

Multiple sclerosis (MS) is a chronic autoimmune demyelinating neurodegenerative central nervous system disorder. The aim of the present study was to investigate the prophylactic effect exerted by the one-time intraperitoneal injection of mesenchymal stem cells (MSCs) 1 × 10 and 14-day intraperitoneal injection of methylprednisolone (MP) 40 mg/kg in an experimental autoimmune encephalomyelitis (EAE). EAE was induced by intradermal injection of rat spinal cord homogenate with complete Freund's adjuvant in Swiss mice. Results of MSCs and MP-treated mice showed a significantly milder disease and fewer clinical scores compared to control mice. They suppressed tumor necrosis factor-alpha and myeloperoxidase and increased interleukin 10, whereas thiobarbituric acid reactive substances and nitric oxide brain contents were reduced to comparable levels between treatment groups. Brain content of GSH was significantly higher in MSCs-treated mice than control mice. It is evident that MSCs have relevant prophylactic effect in an animal model of MS and might represent a valuable tool for stem cell based therapy in MS.

Abdelkader, N. F., M. A. Saad, and R. M. Abdelsalam, "Neuroprotective effect of nebivolol against cisplatin-associated depressive-like behavior in rats", Journal of neurochemistry, vol. 141, no. 3: Wiley Online Library, pp. 449–460, 2017. Abstract
n/a
Tourism