Publications

Export 49 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Z
Zaki, H. F., and R. M. Abdelsalam, "Vinpocetine protects liver against ischemia-reperfusion injury.", Canadian journal of physiology and pharmacology, vol. 91, issue 12, pp. 1064-70, 2013 Dec. Abstract

Hepatic ischemia-reperfusion (IR) injury is a clinical problem that leads to cellular damage and organ dysfunction mediated mainly via production of reactive oxygen species and inflammatory cytokines. Vinpocetine has long been used in cerebrovascular disorders. This study aimed to explore the protective effect of vinpocetine in IR injury to the liver. Ischemia was induced in rats by clamping the common hepatic artery and portal vein for 30 min followed by 30 min of reperfusion. Serum transaminases and liver lactate dehydrogenase (LDH) activities, liver inflammatory cytokines, oxidative stress biomarkers, and liver histopathology were assessed. IR resulted in marked histopathology changes in liver tissues coupled with elevations in serum transaminases and liver LDH activities. IR also increased the production of liver lipid peroxides, nitric oxide, and inflammatory cytokines interleukin-1β and interleukin-6, in parallel with a reduction in reduced glutathione and interleukin-10 in the liver. Pretreatment with vinpocetine protected against liver IR-induced injury, in a dose-dependent manner, as evidenced by the attenuation of oxidative stress as well as inflammatory and liver injury biomarkers. The effects of vinpocetine were comparable with that of curcumin, a natural antioxidant, and could be attributed to its antioxidant and anti-inflammatory properties.

Zaki, A. M., D. M. El-Tanbouly, R. M. Abdelsalam, and H. F. Zaki, "Plumbagin ameliorates hepatic ischemia-reperfusion injury in rats: Role of high mobility group box 1 in inflammation, oxidative stress and apoptosis.", Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, vol. 106, pp. 785-793, 2018 Oct. Abstract

Ischemia-reperfusion (I/R) injury is a pathological process which magnifies with the ensuing inflammatory response and endures with the increase of oxidants especially during reperfusion. The present study was conducted to assess the possible modulatory effects of plumbagin, the active constituent extracted from the roots of traditional medicinal plant Plumbago zeylanica L., on the dire role of high mobility group box 1 (HMGB1) as well as the associated inflammation, oxidative stress and apoptotic cell death following hepatic I/R. Four groups of rats were included: sham-operated, sham-operated treated with plumbagin, I/R (30 min ischemia and 1 h reperfusion) and I/R treated with plumbagin. Pretreatment with plumbagin markedly improved hepatic function and structural integrity compared to the I/R group, as manifested by depressed plasma transaminases and lactate dehydrogenase (LDH) activities as well as alleviated tissue pathological lesions. Plumbagin prominently hampered HMGB1 expression and subsequently quelled inflammatory cascades, as nuclear factor κB (NF-κB), tumor necrosis factor-alpha (TNF-α) and myeloperoxidase (MPO) activity. It also interrupted reactive oxygen species (ROS)-HMGB1loop as evident by restored liver reduced glutathione (GSH), elevated glutathione peroxidase (GPx) activity, along with decreased liver lipid peroxidation. Simultaneously, plumbagin significantly ameliorated apoptosis by amending the mRNA expressions of both anti-apoptotic (Bcl-2) and pro-apoptotic (Bax). The present results revealed that plumbagin is endowed with hepatoprotective activity ascribed to its antioxidant, anti-inflammatory and anti-apoptotic properties which are partially mediated through dampening of HMGB1 expression.

Zaki, A. M., D. M. El-Tanbouly, R. M. Abdelsalam, and H. F. Zaki, "Plumbagin ameliorates hepatic ischemia-reperfusion injury in rats: role of high mobility group box 1 in inflammation, oxidative stress and apoptosis", Biomedicine & Pharmacotherapy, vol. 106: Elsevier Masson, pp. 785–793, 2018. Abstract
n/a
S
Shouman, M. M., R. M. Abdelsalam, M. M. Tawfick, S. A. Kenawy, and M. M. El-Naa, "Antisense Tissue Factor Oligodeoxynucleotides Protected Diethyl Nitrosamine/Carbon Tetrachloride-Induced Liver Fibrosis Through Toll Like Receptor4-Tissue Factor-Protease Activated Receptor1 Pathway.", Frontiers in pharmacology, vol. 12, pp. 676608, 2021. Abstract

Tissue factor (TF) is a blood coagulation factor that has several roles in many non-coagulant pathways involved in different pathological conditions such as angiogenesis, inflammation and fibrogenesis. Coagulation and inflammation are crosslinked with liver fibrosis where protease-activated receptor1 (PAR1) and toll-like receptor4 (TLR4) play a key role. Antisense oligodeoxynucleotides are strong modulators of gene expression. In the present study, antisense TF oligodeoxynucleotides (TFAS) was evaluated in treating liver fibrosis via suppression of TF gene expression. Liver fibrosis was induced in rats by a single administration of N-diethyl nitrosamine (DEN, 200 mg/kg; i. p.) followed by carbon tetrachloride (CCl4, 3 ml/kg; s. c.) once weekly for 6 weeks. Following fibrosis induction, liver TF expression was significantly upregulated along with liver enzymes activities and liver histopathological deterioration. Alpha smooth muscle actin (α-SMA) and transforming growth factor-1beta (TGF-1β) expression, tumor necrosis factor-alpha (TNF-α) and hydroxyproline content and collagen deposition were significantly elevated in the liver. Blocking of TF expression by TFAS injection (2.8 mg/kg; s. c.) once weekly for 6 weeks significantly restored liver enzymes activities and improved histopathological features along with decreasing the elevated α-SMA, TGF-1β, TNF-α, hydroxyproline and collagen. Moreover, TFAS decreased the expression of both PAR1 and TLR4 that were induced by liver fibrosis. In conclusion, we reported that blockage of TF expression by TFAS improved inflammatory and fibrotic changes associated with CCl4+DEN intoxication. In addition, we explored the potential crosslink between the TF, PAR1 and TLR4 in liver fibrogenesis. These findings offer a platform on which recovery from liver fibrosis could be mediated through targeting TF expression.

Seif-El-Nasr, M., A. S. Atia, and R. M. Abdelsalam, "Effect of MAO-B inhibition against ischemia-induced oxidative stress in the rat brain. Comparison with a rational antioxidant.", Arzneimittel-Forschung, vol. 58, issue 4, pp. 160-7, 2008. Abstract

An increasing number of reports suggest the involvement of oxidative stress in neurodegenerative diseases where the increased formation of reactive oxygen species (ROS) leads to neuronal damage and cell death. Dopamine may contribute to neurodegenerative disorders such as Parkinson's disease and ischemia/reperfusion-induced damage. Monoamine oxidase (MAO) enzyme (particularly MAO-B) is responsible for metabolizing dopamine and plays an important role in oxidative stress through altering the redox state of neuronal and glial cells. MAO participates in the generation of hydroxyl radicals during ischemia/reperfusion. This suggests the possible use of MAO inhibitors as neuroprotective agents for treating ischemic injury. The protective effect of deprenyl (N-methyl-N-(1-methyl-2-phenyl-ethyl)-prop-2-yn-1-amine, CAS 14611-51-9) (2 and 10 mg/kg), a MAO-B inhibitor, and beta-carotene (10 and 20 mg/kg), a natural antioxidant, was examined in a rat model of cerebral ischemia. Ischemia was induced in rats by bilateral carotid artery occlusion for 1 h followed by declamping for another hour. The effect of the drugs on the brain activity of lactate dehydrogenase (LDH) and some of the oxidative stress biomarkers such as brain activity of superoxide dismutase (SOD) and catalase (CAT) enzymes and brain malondialdehyde (MDA) content was determined. In addition, the content of catecholamines such as noradrenaline (NA) and dopamine (DA) was determined. Deprenyl decreased the ischemia-induced elevation of LDH activity and MDA content and normalized the SOD activity. In addition, deprenyl increased the CAT activity back to normal, and increased the noradrenaline and dopamine content in the brain of rats. Beta-carotene administration ameliorated the effect of ischemia followed by reperfusion (I/R) demonstrated as decreasing the LDH activity and MDA content and by increasing the SOD activity. The drug also increased CAT activity in the brain of rats. However, beta-carotene did not alter the NA and DA content. These results indicate that deprenyl protected the rat brains against the ischemia-induced oxidative damage, an effect which might be explained through multiple mechanisms, possibly due to reduction of dopamine catabolism with a subsequent increased activity on dopaminergic D2 receptors and suppressing the action of ROS as well.

Seif-El-Nasr, M., A. S. Atia, and R. M. Abdelsalam, "Effect of MAO-B inhibition against ischemia-induced oxidative stress in the rat brain", Arzneimittelforschung, vol. 58, no. 04: Editio Cantor Verlag, pp. 160–167, 2008. Abstract
n/a
Salama, R. A. A., R. M. Abdelsalam, O. M. E. Abdel-Salam, M. M. Khattab, N. A. Salem, Z. A. El-Khyat, F. A. Morsy, and E. - E. D. S. Eldenshary, "Modulation of gastric acid secretion by cannabinoids in rats.", Journal of biochemical and molecular toxicology, pp. e22256, 2018 Nov 01. Abstract

The current study aimed to evaluate the role of cannabinoid receptors in the regulation of gastric acid secretion and oxidative stress in gastric mucosa. To fulfill this aim, gastric acid secretion stimulated with histamine (5 mg/kg, subcutaneous [SC]), 2-deoxy- d-glucose (D-G) (200 mg/kg, intravenous) or -carbachol (4 μg/kg, SC) in the 4-hour pylorus-ligated rats. The CB1R agonist ( N-arachidonoyl dopamine, 1 mg/kg, SC) inhibited gastric acid secretion stimulated by D-G and carbachol but not in histamine, reduced pepsin content, and increased mucin secretion. Furthermore, it decreased malondialdehyde (MDA) and nitric oxide (NO) contents with an increase in glutathione (GSH) and paraoxonase 1 (PON-1). Meanwhile, CB2R antagonist (AM630, 1 mg/kg, SC) inhibited gastric acid secretion stimulated by D-G and reduced MDA and NO contents with an increase in GSH and PON-1. Meanwhile, CB1R antagonist rimonabant or CB2R agonist GW 405833 had no effect on stimulated gastric acid secretion. Therefore, both CB1R agonist and CB2R antagonist may exert antisecretory and antioxidant potential in the stomach.

Safar, M. M., and R. M. Abdelsalam, "H2S donors attenuate diabetic nephropathy in rats: Modulation of oxidant status and polyol pathway", Pharmacological Reports, vol. 67 (2015), issue 25560570, pp. 17–23, 2015.
Saad, M. A., R. M. Abdelsalam, S. A. Kenawy, and A. S. Attia, "Pinocembrin attenuates hippocampal inflammation, oxidative perturbations and apoptosis in a rat model of global cerebral ischemia reperfusion.", Pharmacological reports : PR, vol. 67, issue 1, pp. 115-22, 2015 Feb. Abstract

BACKGROUND: Pinocembrin is a major flavonoid molecule isolated from honey and propolis. It has versatile pharmacological and biological activities including antimicrobial, anti-inflammatory, antioxidant, and anticancer activities as well as neuroprotective effects against cerebral ischemic injury. The purpose of the current study was to determine the possible mechanisms of neuroprotection elicited by pinocembrin with specific emphasis on chronic prophylactic use before the induction of global cerebral ischemia reperfusion.

METHODS: Global cerebral ischemia-reperfusion (I/R) was induced by bilateral carotid artery occlusion for 15min followed by 60min reperfusion period. Animals were randomly allocated into 3 groups (n=28): Sham operated, I/R control and rats treated with pinocembrin (10mg/kg, po) daily for 7 days then I/R was induced 1h after the last dose of pinocembrin. After reperfusion rats were killed by decapitation, brains were removed and both hippocampi separated and the following biochemical parameters were estimated; lactate dehydrogenase activity, oxidative stress markers (lipid peroxides, nitric oxide and reduced glutathione), inflammatory markers (myeloperoxidase, tumor necrosis factor-alpha, nuclear factor kappa-B, interleukin-6 and interleukin-10), apoptotic biomarkers (caspase 3 and cytochrome C), neurotransmitters (glutamate, gamma aminobutyric acid) and infarct size were assessed.

RESULTS: Pinocembrin ameliorated damage induced by I/R through suppressing oxidative stress, inflammatory and apoptotic markers as well as mitigating glutamate and lactate dehydrogenase activity. One of the more significant findings to emerge from this study is that pinocembrin normalized the infarct size elevated by I/R.

CONCLUSIONS: Pinocembrin showed a neuroprotective effects through antioxidant, anti-inflammatory and antiapoptotic mechanisms.

N
Nassar, N. N., R. M. Abdelsalam, A. A. Abdel-Rahman, and D. M. Abdallah, "Possible involvement of oxidative stress and inflammatory mediators in the protective effects of the early preconditioning window against transient global ischemia in rats.", Neurochemical research, vol. 37, issue 3, pp. 614-21, 2012 Mar. Abstract

Ischemic preconditioning (IPC), comprising exposure to sub-lethal short term ischemic events, has been shown to exert adaptive responses in many organs including the brain, thus guarding against exacerbations of ischemia reperfusion (IR). However, the mechanisms involved in the early phase of such a protection remain elusive; hence, the present study aimed to investigate the modulatory effect of preconditioning against IR induced injury on infarct size, free radicals, inflammatory/anti-inflammatory markers, caspase-3 and heat shock protein (HSP)70 in the rat hippocampus. To this end, male Wistar rats were divided into 3 groups, (1) sham operated (SO) control; (2) IPC, animals were subject to 3 episodes of ischemia (5 min) followed by reperfusion (10 min), afterwards rats underwent ischemia (15 min) followed by reperfusion (60 min); (3) IR animals were subjected to 15 min global ischemia followed by 60 min reperfusion. IR produced cerebral infarction accompanied by an imbalance in the hippocampal redox status, neutrophil infiltration, elevation in tumor necrosis factor (TNF)-α and prostaglandin (PG)E₂, besides reduction in interleukin (IL)-10 and nitric oxide (NO) levels. IPC reverted all changes except for PGE₂; however, neither HSP70 nor caspase-3 expression was altered following IR or IPC. The current study points thus towards the activation of the antioxidant system, anti-inflammatory pathway, as well as NO in the early phase of preconditioning protection.

M
Mousavi, M. P. S., M. K. Abd El-Rahman, A. M. Mahmoud, R. M. Abdelsalam, and P. Bühlmann, "In Situ Sensing of the Neurotransmitter Acetylcholine in a Dynamic Range of 1 nM to 1 mM.", ACS sensors, 2018 Nov 19. Abstract

The neurotransmitter acetylcholine (ACh) plays a key role in the pathophysiology of brain disorders such as Alzheimer's disease. Understanding the dynamics of ACh concentration changes and kinetics of ACh degradation in the living brain is crucial to unravel the pathophysiology of such diseases and the rational design of therapeutics. In this work, an electrochemical sensor capable of dynamic, label-free, selective, and in situ detection of ACh in a range of 1 nM to 1 mM (with temporal resolution of less than one second) was developed. The sensor was employed for the direct detection of ACh in artificial cerebrospinal fluid and rat brain homogenate, without any prior separation steps. A potentiometric receptor-doped ion-selective electrode (ISE) with selectivity for ACh was designed by taking advantage of the positive charge of ACh. The dynamic range, limit of detection (LOD), and the selectivity of the sensor were optimized stepwise by (i) screening of hydrophobic biomimetic calixarenes to identify receptors that strongly bind to ACh based on shape-selective multitopic recognition, (ii) doping of the ISE sensing membrane with an ACh-binding hydrophobic calixarene to enable selective detection of ACh in complex matrices, (iii) utilizing a hydrophilic calixarene in the inner filling solution of the ISE to buffer the concentration of ACh and, thereby, lower the LOD of the sensor, and (iv) introducing a surface treatment step prior to the measurement by placing the sensor for ∼1 min in a solution of a hydrophilic calixarene to lower the LOD of the sensor even further.

Mohamed, Y. S., R. M. Abdelsalam, A. S. Attia, M. T. Abdel-Aziz, and D. M. El-Tanbouly, "Regulation of liver regeneration by prostaglandin E and thromboxane A following partial hepatectomy in rats.", Naunyn-Schmiedeberg's archives of pharmacology, vol. 393, issue 8, pp. 1437-1446, 2020. Abstract

The implication of prostaglandin E (PGE) and thromboxane A (TXA) in the striking process of liver regeneration has been previously reported. However, their exact roles and downstream signals have not been utterly revealed. Therefore, the present study was conducted to explore whether inhibition of cyclooxygenase-2 (COX-2)-derived PGE by celecoxib and blocking of TXA action by seratrodast could alter the progression of liver regeneration after 70% partial hepatectomy (PHx) in rats. Celecoxib (20 mg/kg/day) and seratrodast (2 mg/kg/day) were given orally 1 h before PHx and then daily till the end of experiment (1, 3, or 7 days after the operation). Interestingly, celecoxib-treated rats showed a further increase in interleukin-6, p65 nuclear factor κB, and phosphorylated signal transducer and activator of transcription 3 as compared with PHx control rats. Furthermore, the liver contents of growth factors as well as β-catenin and cyclin D1protein expressions were also enhanced by celecoxib. Accordingly, celecoxib significantly improved hepatic proliferation as indicated by the increase in Ki67 expression and liver index. Contrariwise, seratrodast hindered the normal regeneration process and completely abolished the proliferative effect of celecoxib. In conclusion, TXA has a major role in liver regeneration that could greatly mediate the triggering effect of celecoxib on hepatocytes proliferation following PHx.

Mansour, H. M., A. A. A. Salama, R. M. Abdel-Salam, N. A. Ahmed, N. N. Yassen, and H. F. Zaki, "The anti-inflammatory and anti-fibrotic effects of tadalafil in thioacetamide-induced liver fibrosis in rats.", Canadian journal of physiology and pharmacology, vol. 96, issue 12, pp. 1308-1317, 2018 Dec. Abstract

Liver fibrosis is a health concern that leads to organ failure mediated via production of inflammatory cytokines and fibrotic biomarkers. This study aimed to explore the protective effect of tadalafil, a phosphodiesterase-5 inhibitor, against thioacetamide (TAA)-induced liver fibrosis. Fibrosis was induced by administration of TAA (200 mg/kg, i.p.) twice weekly for 6 weeks. Serum transaminases activities, liver inflammatory cytokines, fibrotic biomarkers, and liver histopathology were assessed. TAA induced marked histopathological changes in liver tissues coupled with elevations in serum transaminases activities. Furthermore, hepatic content of nitric oxide and tumor necrosis factor-alpha, interleukin-6, and interleukin-1 beta were elevated, together with a reduction of interleukin-10 in the liver. In addition, TAA increased hepatic contents of transforming growth factor-beta, hydroxyproline, alpha-smooth muscle actin, and gene expression of collagen-1. Pretreatment with tadalafil protected against TAA-induced liver fibrosis, in a dose-dependent manner, as proved by the alleviation of inflammatory and fibrotic biomarkers. The effects of tadalafil were comparable with that of silymarin, a natural antioxidant, and could be assigned to its anti-inflammatory and anti-fibrotic properties.

Mahfouz, M. M., R. M. Abdelsalam, M. A. Masoud, H. A. Mansour, O. A. Ahmed-Farid, and S. A. Kenawy, "The neuroprotective effect of mesenchymal stem cells on an experimentally induced model for multiple sclerosis in mice.", Journal of biochemical and molecular toxicology, vol. 31, issue 9, 2017 Sep. Abstract

Multiple sclerosis (MS) is a chronic autoimmune demyelinating neurodegenerative central nervous system disorder. The aim of the present study was to investigate the prophylactic effect exerted by the one-time intraperitoneal injection of mesenchymal stem cells (MSCs) 1 × 10 and 14-day intraperitoneal injection of methylprednisolone (MP) 40 mg/kg in an experimental autoimmune encephalomyelitis (EAE). EAE was induced by intradermal injection of rat spinal cord homogenate with complete Freund's adjuvant in Swiss mice. Results of MSCs and MP-treated mice showed a significantly milder disease and fewer clinical scores compared to control mice. They suppressed tumor necrosis factor-alpha and myeloperoxidase and increased interleukin 10, whereas thiobarbituric acid reactive substances and nitric oxide brain contents were reduced to comparable levels between treatment groups. Brain content of GSH was significantly higher in MSCs-treated mice than control mice. It is evident that MSCs have relevant prophylactic effect in an animal model of MS and might represent a valuable tool for stem cell based therapy in MS.

Mahdi, Z. K., R. M. Abdelsalam, and A. M. Agha, "Resveratrol alleviates oxidative stress and inflammation in the hippocampus of rats subjected to global cerebral ischemia/reperfusion: Comparison with vitamin E", African journal of Pharmacy and Pharmacology, vol. 8, issue 27, pp. 727-736, 2014.
K
Knuth, S., R. M. Abdelsalam, M. T. Khayyal, F. Schweda, J. Heilmann, M. G. Kees, G. Mair, F. Kees, and G. Jürgenliemk, "Catechol conjugates are in vivo metabolites of Salicis cortex.", Planta medica, vol. 79, issue 16, pp. 1489-94, 2013 Nov. Abstract

After oral administration of 100 mg/kg b. w. (235.8 µmol/kg) salicortin to Wistar rats, peak serum concentrations of 1.43 mg/L (13.0 µM) catechol were detected after 0.5 h in addition to salicylic acid by HPLC-DAD after serum processing with β-glucuronidase and sulphatase. Both metabolites could also be detected in the serum of healthy volunteers following oral administration of a willow bark extract (Salicis cortex, Salix spec., Salicaceae) corresponding to 240 mg of salicin after processing with both enzymes. In humans, the cmax (1.46 mg/L, 13.3 µM) of catechol was reached after 1.2 h. The predominant phase-II metabolite in humans and rats was catechol sulphate, determined by HPLC analysis of serum samples processed with only one kind of enzyme. Without serum processing with glucuronidase and sulphatase, no unconjugated catechol could be detected in human and animal serum samples. As catechol is described as an anti-inflammatory compound, these results may contribute to the elucidation of the mechanism of the action of willow bark extract.

Khalifa, M., R. M. Abdelsalam, M. M. Safar, and H. F. Zaki, "Phosphodiesterase (PDE) III inhibitor, Cilostazol, improved memory impairment in aluminum chloride-treated rats: modulation of cAMP/CREB pathway.", Inflammopharmacology, 2022. Abstract

The most prevalent type of dementia is Alzheimer's disease (AD), which is currently incurable. Existing treatments for Alzheimer's disease, such as acetylcholinesterase inhibitors, are only effective for symptom relief. Disease-modifying medications for Alzheimer's disease are desperately required, given the enormous burdens that the disease places on individuals and communities. Phosphodiesterase (PDE) inhibitors are gaining a lot of attention in the research community because of their potential in treating age-related cognitive decline. Cilostazol is a selective PDE III inhibitor used as antiplatelet agent through cAMP response element-binding (CREB) protein phosphorylation pathway (cAMP/CREB). The neuroprotective effect of cilostazol in AD-like cognitive decline in rats was investigated in this study. After 2 months of intraperitoneal administration of 10 mg/kg aluminum chloride, Morris water maze and Y-maze (behavioral tests) were performed. After that, histological and biochemical examinations of the hippocampal region were carried out. Aluminum chloride-treated rats showed histological, biochemical, and behavioral changes similar to Alzheimer's disease. Cilostazol improved rats' behavioral and histological conditions, raised neprilysin level while reduced levels of amyloid-beta protein and phosphorylated tau protein. It also decreased the hippocampal levels of tumor necrosis factor-alpha, nuclear factor-kappa B, FAS ligand, acetylcholinesterase content, and malondialdehyde. These outcomes demonstrate the protective activity of cilostazol versus aluminum-induced memory impairment.

H
Hussien, Y. A., D. I. N. A. F. Mansour, S. A. Nada, S. S. Abd El-Rahman, R. M. Abdelsalam, A. S. Attia, and D. M. El-Tanbouly, "Linagliptin attenuates thioacetamide-induced hepatic encephalopathy in rats: Modulation of C/EBP-β and CX3CL1/Fractalkine, neuro-inflammation, oxidative stress and behavioral defects.", Life sciences, vol. 295, pp. 120378, 2022. Abstract

The degree of neuroinflammation is correlated mainly with cognitive and motor dysfunctions associated with hepatic encephalopathy (HE). The current study was conducted to explore the possible protective potential of the antidiabetic drug; linagliptin (LNG; 10 or 20 mg/kg) against HE induced by thioacetamide (TAA) in rats. Animals received two consecutive intraperitoneal injections of TAA (200 mg/kg) on alternate days. Neurobehavioral tests were performed 24 h after the last injection, and rats were sacrificed 24 h later (48 h). The higher LNG dose more effectively protected against TAA-induced changes. Administration of LNG for 15 days before TAA notably mitigated TAA-induced acute liver injury and HE, as verified by the marked improvement in motor coordination, locomotor activity, and cognition function. LNG maintained both brain and liver weight indices and retracted the hyperammonemia with a prominent suppression in liver transaminases. This was accompanied by an evident modulation of hepatic and hippocampal oxidative stress markers; GSH and MDA. LNG attenuated both liver and hippocampal pro-inflammatory cytokine; IL-1β while augmented the anti-inflammatory one; IL-10. It noticeably reduced hepatic and hippocampal COX-2 and TNF-α and maintained hepatic and brain architectures. It also induced a marked decrease in the inflammation-regulated transcription factor, C/EBP-β, with a profound increase in hippocampi's anti-inflammatory chemokine, CX3CL1/Fractalkine. LNG modulated TAA-induced disturbances in hippocampal amino acids; glutamate, and GABA with a significant increase in hippocampal BDNF. In conclusion, the regulatory effect of LNG on neuroinflammatory signaling underlines its neuroprotective effect against progressive encephalopathy accompanying acute liver injury.

Hassan, N. F., S. A. Nada, A. Hassan, M. R. El-Ansary, M. Y. Al-Shorbagy, and R. M. Abdelsalam, "Saroglitazar Deactivates the Hepatic LPS/TLR4 Signaling Pathway and Ameliorates Adipocyte Dysfunction in Rats with High-Fat Emulsion/LPS Model-Induced Non-alcoholic Steatohepatitis.", Inflammation, 2019 Feb 09. Abstract

The most epidemic liver disorder non-alcoholic steatohepatitis (NASH) is characterized by hepatic steatosis and inflammation with hepatocellular damage. Recently, it is predictable to be the extensive cause for liver transplantation. The absence of an approved therapeutic agent for NASH is the reason for investigating saroglitazar (SAR) which showed promising effects as a dual PPAR-α/γ agonist in recent studies on NASH. Here, we aimed to investigate the effect of SAR on NASH induced in rats by the administration of high-fat emulsion (HFE) and small doses of lipopolysaccharides (LPS) for 5 weeks. Rats were divided into three groups: negative control group (saline and standard rodent chow), model group (HFE(10 ml/kg/day, oral gavage) + LPS(0.5 mg/kg/week, i.p)), and SAR-treated group (HFE(10 ml/kg/day, oral gavage) + LPS(0.5 mg/kg/week, i.p.) + SAR(4 mg/kg/day, oral gavage) starting at week 3.Treatment with SAR successfully ameliorated the damaging effects of HFE with LPS, by counteracting body weight gain and biochemically by normalization of liver function parameters activity, glucose, insulin, homeostasis model of assessment (HOMA-IR) score, lipid profile levels, and histopathological examination. Significant changes in adipokine levels were perceived, resulting in a significant decline in serum leptin and tumor necrosis factor-α (TNF-α) level concurrent with adiponectin normalization. The positive effects observed for SAR on NASH are due to the downregulation of the LPS/TLR4 pathway, as indicated by the suppression of hepatic Toll-like receptor 4 (TLR4), NF-κB, TNF-α, and transforming growth factor-β1 (TGF-β1) expression. In conclusion, this work verified that SAR ameliorates NASH through deactivation of the hepatic LPS/TLR4 pathway and inhibition of adipocyte dysfunction.

Hammam, O. A., N. Elkhafif, Y. M. Attia, M. T. Mansour, M. M. Elmazar, R. M. Abdelsalam, S. A. Kenawy, and A. S. El-Khatib, "Wharton's jelly-derived mesenchymal stem cells combined with praziquantel as a potential therapy for Schistosoma mansoni-induced liver fibrosis.", Scientific reports, vol. 6, pp. 21005, 2016 Feb 15. Abstract

Liver fibrosis is one of the most serious consequences of S. mansoni infection. The aim of the present study was to investigate the potential anti-fibrotic effect of human Wharton's jelly-derived mesenchymal stem cells (WJMSCs) combined with praziquantel (PZQ) in S. mansoni-infected mice. S. mansoni-infected mice received early (8(th) week post infection) and late (16(th) week post infection) treatment with WJMSCs, alone and combined with oral PZQ. At the 10(th) month post infection, livers were collected for subsequent flow cytometric, histopathological, morphometric, immunohistochemical, gene expression, and gelatin zymographic studies. After transplantation, WJMSCs differentiated into functioning liver-like cells as evidenced by their ability to express human hepatocyte-specific markers. Regression of S. mansoni-induced liver fibrosis was also observed in transplanted groups, as evidenced by histopathological, morphometric, and gelatin zymographic results besides decreased expression of three essential contributors to liver fibrosis in this particular model; alpha smooth muscle actin, collagen-I, and interleukin-13. PZQ additionally enhanced the beneficial effects observed in WJMSCs-treated groups. Our results suggest that combining WJMSCs to PZQ caused better enhancement in S. mansoni-induced liver fibrosis, compared to using each alone.

Hammam, O. A., N. Elkhafif, Y. M. Attia, M. T. Mansour, M. M. Elmazar, R. M. Abdelsalam, S. A. Kenawy, and A. S. El-Khatib, "Wharton’s jelly-derived mesenchymal stem cells combined with praziquantel as a potential therapy for Schistosoma mansoni-induced liver fibrosis", Scientific reports, vol. 6, no. 1: Nature Publishing Group, pp. 1–14, 2016. Abstract
n/a
G
Gawad, N. A. - E. M., H. H. Georgey, N. A. Ibrahim, N. H. Amin, and R. M. Abdelsalam, "Synthesis of novel pyrazole and dihydropyrazoles derivatives as potential anti-inflammatory and analgesic agents.", Archives of pharmacal research, vol. 35, issue 5, pp. 807-21, 2012 May. Abstract

Novel dihydropyrazole 5-8, 10 and pyrazole derivatives 12, 14, 15, 17 were synthesized. The structures of the newly synthesized compounds were elucidated by spectral and elemental analyses. The anti-inflammatory activity of all new compounds was evaluated using the carrageenan-induced rat paw edema test using indomethacin and celecoxib as reference drugs. The most active derivatives as anti-inflammatory agents were accordingly tested for their analgesic activity using the p-benzoquinone-induced writhing method in mice and results revealed that these compounds had also good analgesic activity. The ulcerogenic liability of the selected compounds was also evaluated. Results showed that the selected derivatives had anti-inflammatory activity comparable to or slightly lower than the reference drugs, reaching about 82% inhibition with a considerable gastric safety profile.

E
Essam, R. M., L. A. Ahmed, R. M. Abdelsalam, and A. S. El-Khatib, "Phosphodiestrase-1 and 4 inhibitors ameliorate liver fibrosis in rats: Modulation of cAMP/CREB/TLR4 inflammatory and fibrogenic pathways.", Life sciences, 2019. Abstract

BACKGROUND: Phosphodiestrase (PDE) enzymes are suggested to play a leading role in fibrogenesis of liver where studies showed the possible implication of PDE 1 & 4 in liver injury proposing them as possible targets for treating liver fibrosis.

AIM: The present study was designed to investigate, for the first time, the possible therapeutic effects of selective inhibitors of PDE-1 (vinpocetine) and PDE-4 (roflumilast) in liver fibrosis induced by diethylnitrosamine (DEN) in rats.

MAIN METHODS: Rats were given DEN (100 mg/kg, i.p.) once weekly for 6 weeks to induce liver fibrosis. Vinpocetine (10 mg/kg/day) or roflumilast (0.5 mg/kg/day) was then orally administered for 2 weeks.

KEY FINDINGS: Vinpocetine significantly suppressed the contents of hydroxyproline, transforming growth factor-beta 1 (TGF-β1), nuclear factor-kappa B (NF-κB) whereas roflumilast normalized them. Moreover, tumor necrosis factor-alpha (TNF-α) content and protein expressions of toll-like receptor 4 (TLR4) and tissue inhibitor of metalloproteinase-1 (TIMP-1) were markedly decreased whereas cAMP response element binding (CREB) protein expression was significantly elevated by both treatments. Additionally, vinpocetine and roflumilast up-regulated the gene expression of bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) receptor where roflumilast showed better results. PDE1 and 4 activities were inhibited by vinpocetine and roflumilast, respectively. The superior results offered by roflumilast could be related to the higher cAMP level obtained relative to vinpocetine.

SIGNIFICANCE: Our study manifested the up-regulation of PDE enzymes (1 & 4) in liver fibrosis and addressed the therapeutic role of vinpocetine and roflumilast as PDEIs through a cAMP-mediated TLR4 inflammatory and fibrogenic signaling pathways.

Elgohary, R., R. M. Abdelsalam, O. M. E. Abdel-Salam, M. M. Khattab, N. A. Salem, Z. A. El-Khyat, and F. A. Morsy, "Protective effect of cannabinoids on gastric mucosal lesions induced by water immersion restrain stress in rats.", Iranian journal of basic medical sciences, vol. 24, issue 9, pp. 1182-1189, 2021. Abstract

OBJECTIVES: This study aimed to determine the impact of cannabinoid agonists and antagonists on the mucosal lesion progress in the stomach induced by water-immersion restraint stress (WIRS).

MATERIALS AND METHODS: Rats subjected to WIRS for 4 hr were treated with Dimethyl sulfoxide (DMSO), CBR1 agonist (NADA, 1 mg/kg), CBR1 antagonist (Rimonabant, 1 mg/kg), CBR2 agonist (GW405833 1 mg/kg) or CBR2 antagonist (AM630, 1 mg/kg SC) 30 min before WIRS. Microscopic lesions, oxidative stress, inflammatory cytokines biomarkers, and (Myeloperoxidase) MPO in gastric tissues were determined.

RESULTS: Results indicated development of severe gastric lesions with a substantial increase in the contents of (nitric oxide) NO, (malondialdehyde) MDA, (interleukin-1 beta) IL-1β, MPO, (tumor necrosis factor-alpha) TNF-α, and a significant fall in the content of GSH and the activity of PON-1 after WIRS.

CONCLUSION: Treatment with NADA and AM630 protected gastric tissues against ulcers as demonstrated by a decrease in the contents of MDA, TNF-α, MPO, and IL-1β along with an increase in the content of PON-1 activity and GSH in the stomach tissues. On the other hand, treatment with SR141716A or GW405833 showed no protective effects on ulcers development. It seems that cannabinoids exert their antioxidant potential and anti-inflammatory effects against WIRS-induced gastric ulcers by activation of CB1R.

El-Tanbouly DM, Abdelsalam RM, Attia AS, and A. - A. MT., "Pretreatment with magnesium ameliorates lipopolysaccharide-induced liver injury in mice.", Pharmacol Rep., vol. 67(5), issue 26398385, pp. 914-20, 2015.
Tourism