Hamed, I., and M. I. Owis,
"Automatic Arrhythmia Detection Using Support Vector Machine Based on Discrete Wavelet Transform",
Journal of Medical Imaging and Health Informatics: American Scientific Publishers, 2015.
AbstractArrhythmia is abnormal electrical activity in the heart bringing about less effective pumping. An abnormally fast electrical signal initiates two problems: (1) the heart pumps too quick; and (2) ventricles are filled with an inadequate amount of blood. On the other hand, an abnormally slow electrical signal pumps a sufficient amount of blood out of the heart but too slow. Arrhythmia is classified by both its location of origin and rate. Some arrhythmias are life-threatening and eventually result in cardiac arrest. Hence, the purpose of this study is to present a robust implementation algorithm to discriminate between normal sinus rhythm and three types of arrhythmia: atrial fibrillation (AF), ventricular fibrillation (VF), and supra ventricular tachycardia (SVT) that were collected from physionet database. This is attained by capturing the main features that contain both frequency and location information of the signal through discrete wavelet transform, followed by principal component analysis on each decomposed level. Features were reduced through statistical analysis as an input to support vector machine with optimized parameters that resulted in overall accuracy of 96.89%.
Mahfouz, M. M., E. A. E. Fatah, A. M. Badawi, and R. L. Jantz,
"Automated Skull 3D Geodesic and Volumetric Measurements for Cranial Morphology Tracking and Facial Reconstruction",
CMBBE, 7th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering, Cote De Azure, France: University of Cardiff, 2006.
Abstractn/a
Anis, Y. H., M. R. Holl, and D. R. Meldrum,
"Automated selection and placement of single cells using vision-based feedback control",
Automation Science and Engineering, IEEE Transactions on, vol. 7, no. 3: IEEE, pp. 598–606, 2010.
Abstract
Esraa Elhariri, N. Elbendary, A. E. Hassanien, and A. Badr,
"Automated Ripeness Assessment System of Tomatoes Using PCA and SVM Techniques",
Computer Vision and Image Processing in Intelligent Systems and Multimedia Technologies, USA, IGI, pp. 101-131, 2014.
AbstractOne.of.the.prime.factors.in.ensuring.a.consistent.marketing.of.crops.is.product.quality,.and.the.process.of.
determining.ripeness.stages.is.a.very.important.issue.in.the.industry.of.(fruits.and.vegetables).production,.
since.ripeness.is.the.main.quality.indicator.from.the.customers’.perspective..To.ensure.optimum.yield.of.
high.quality.products,.an.objective.and.accurate.ripeness.assessment.of.agricultural.crops.is.important..
This.chapter.discusses.the.problem.of.determining.different.ripeness.stages.of.tomato.and.presents.a.
content-based.image.classification.approach.to.automate.the.ripeness.assessment.process.of.tomato.via.
examining.and.classifying.the.different.ripeness.stages.as.a.solution.for.this.problem..It.introduces.a.
survey.about.resent.research.work.related.to.monitoring.and.classification.of.maturity.stages.for.fruits/
vegetables.and.provides.the.core.concepts.of.color.features,.SVM,.and.PCA.algorithms..Then.it.describes.
the.proposed.approach.for.solving.the.problem.of.determining.different.ripeness.stages.of.tomatoes..The.
proposed.approach.consists.of.three.phases,.namely.pre-processing,.feature.extraction,.and.classification.
phase..The.classification.process.depends.totally.on.color.features.(colored.histogram.and.color.moments),.
since.the.surface.color.of.a.tomato.is.the.most.important.characteristic.to.observe.ripeness..This.approach.
uses.Principal.Components.Analysis.(PCA).and.Support.Vector.Machine.(SVM).algorithms.for.feature.
extraction.and.classification,.respectively
Alfarghaly, O., R. Khaled, A. Elkorany, M. Helal, and A. Fahmy,
"Automated radiology report generation using conditioned transformers",
Informatics in Medicine Unlocked, vol. 24: Elsevier, pp. 100557, 2021.
Abstractn/a
Ashili, S. P., L. Kelbauskas, J. Houkal, D. Smith, Y. Tian, C. Youngbull, H. Zhu, Y. H. Anis, M. Hupp, K. B. Lee, et al.,
"Automated platform for multiparameter stimulus response studies of metabolic activity at the single-cell level",
Microfluidics, BioMEMS, and Medical Microsystems IX, vol. 7929: International Society for Optics and Photonics, pp. 79290S, 2011.
Abstract