, vol. 77, pp. 1240-1251, 2012.
The retarded development of parthenote embryo could be due to aberrant epigenetic imprinting, which may disrupt many aspects and lead to conceptus demise. The present work was conducted to: 1) compare the development of in vitro produced (IVP) and parthenogenetically developed (P) buffalo embryos from the 2-cell to blastocyst stage; 2) investigate the global gene expression profile and search for new candidate transcripts differing between IVP and P buffalo blastocyst using cDNA microarray analysis (validated by Real Time PCR); 3) follow the particular expression patterns of PLAC8 and OCT4 genes at five different stages of preimplantation development by Real Time PCR; and 4) study the expression of CDX2 at the blastcocyst stage. Cleavage rate was higher (P < 0.05) in P than IVP buffalo embryos, while, progression to blastocyst and number of cells per blastocyst were lower (P < 0.05) in P than IVP blastocysts. Microarray analysis indicate that 56 differentially expressed genes between the two groups, of which 51 genes (91.07%) were up-regulated, and five genes were downregulated in IVP blastocyst, using 1.4 fold-changes as a cutoff. Differentially expressed genes are related to translation, nucleic acid synthesis, cell adhesion and placentation. Validation of candidate genes revealed that the transcript abundance of PTGS2, RPS27A, TM2D3, PPA1, AlOX15, RPLO and PLAC8 were downregulated (7/8) in parthenote blastocyst compared to the IVP blastocyst. PLAC8 gene expression was higher (P < 0.05) at 2-cell, morula and blastocyst stages in IVP embryos compared with parthenote embryos. The OCT4 gene expression was higher (P < 0.05) in 2-cell, 4-cell, 8-cell and blastocysts produced in vitro. In conclusion, the retarded development of parthenogenetic buffalo embryos could be due to downregulation of genes related to translation, nucleic acid synthesis, cell adhesion, and placental development. The low expression of PLAC8 and OCT4 during the different stages of development may be responsible, in part, to the failure of development of parthenote buffalo embryos.