Hassanien, A. E.,
"Associative Watermarking Scheme for Medical Image Authentication",
International Symposium on Distributed Computing and Artificial Intelligence, DCAI 2011, Salamanca, Spain, Advances in Intelligent and Soft Computing, Springer, Volume 91/2011, 43-50, , 6-8 April 2011.
AbstractWith the widespread and increasing use of internet and digital forms of image; and the convencience of medical professionals that the future of health care will be shaped by teleradiology and technologies such as telemedicine in general. In addition to the various radiological modalities which produce a variety of digital medical files most often datasets and images. These files should be protected from unwanted modification of their contents, especially as they contain vital medical information. Thus their protection and authentication seems to be of great importance and this need will rise along with the future standardization of exchange of data between hospitals or between patients and doctors. In this paper, an associative watermarking scheme is conducted to perform associative watermarking rules to the images which reducts the amount of embedded data, vector quantization indexing scheme is used to embed watermark for the purpose of image authentication. The vector quantization decoding technique is applied to reconstruct the watermarked image from the watermarked index table. The experimental results show that the proposed scheme is robust. The watermarked images are resistant to severe image processing attcks such as Gaussian noise, brightness, blurring, sharpening, cropping, and JPEG lossy compression.
Hassanien, A. E.,
"Intelligent Hybrid Anomaly Network Intrusion Detection System.",
Communication and Networking - International Conference, FGCN 2011, Jeju Island, Korea, 8-10 December, 2011.
AbstractIntrusion detection systems (IDSs) is an essential key for network defense. The hybrid intrusion detection system combines the individual base classifiers and feature selection algorithm to maximize detection accuracy and minimize computational complexity. We investigated the performance of Genetic algorithm-based feature selection system to reduce the data features space and then the hidden naïve bays (HNB) system were adapted to classify the network intrusion into five outcomes: normal, and four anomaly types including denial of service, user-to-root, remote-to-local, and probing. In order to evaluate the performance of introduced hybrid intrusion system, several groups of experiments are conducted and demonstrated on NSL-KDD dataset. Moreover, the performances of intelligent hybrid intrusion system have been compared with the results of well-known feature selection algorithms. It is found that, hybrid intrusion system produces consistently better performances on selecting the subsets of features which resulting better classification accuracies (98.63%).
Hassanien, A. E.,
"Machine Learning-Based Soccer Video Summarization System.",
Multimedia, Computer Graphics and Broadcasting - International Conference, MulGraB 2011,, Jeju Island, Korea, December 8-10, 2011.
AbstractThis paper presents a machine learning (ML) based event detection and summarization system for soccer matches. The proposed system is composed of six phases. Firstly, in the pre-processing phase, the system segments the whole video stream into small video shots. Then, in the shot processing phase, it applies two types of classification to the video shots resulted from the pre-processing phase. Afterwards, in the replay detection phase, the system applies two machine learning algorithms, namely; support vector machine (SVM) and neural network (NN), for emphasizing important segments with logo appearance. Also, in the score board detection phase, the system uses both ML algorithms for detecting the caption region providing information about the score of the game. Subsequently, in the excitement event detection phase, the system uses k-means algorithm and Hough line transform for detecting vertical goal posts and Gabor filter for detecting goal net. Finally, in the logo-based event detection and summarization phase, the system highlights the most important events during the match. Experiments on real soccer videos demonstrate encouraging results. Compared to the performance results obtained using SVM classifier, the proposed system attained good NN-based performance results concerning recall ratio, however it attained poor NN-based performance results concerning precision ratio.