Ye, R., M. Pi, M. M. Nooh, S. W. Bahout, and D. L. Quarles, "Human GPRC6A Mediates Testosterone-Induced Mitogen-Activated Protein Kinases and mTORC1 Signaling in Prostate Cancer Cells.", Molecular pharmacology, vol. 95, issue 5, pp. 563-572, 2019 05. Abstract

G protein-coupled receptor family C group 6 member A (GPRC6A) is activated by testosterone and modulates prostate cancer progression. Most humans have a GPRC6A variant that contains a recently evolved KGKY insertion/deletion in the third intracellular loop (ICL3) (designated as GPRC6A) that replaces the ancestral KGRKLP sequence (GPRC6A) present in all other species. In vitro assays purport that human GPRC6A is retained intracellularly and lacks function. These findings contrast with ligand-dependent activation and coupling to mammalian target of rapamycin complex 1 (mTORC1) signaling of endogenous human GPRC6A in PC-3 cells. To understand these discrepant results, we expressed mouse (mGPRC6A), human (hGPRC6A), and humanized mouse (mGPRC6A) GPRC6A into human embryonic kidney 293 cells. Our results demonstrate that mGPRC6A acts as a classic G protein-coupled receptor, which is expressed at the cell membrane and internalizes in response to ligand activation by testosterone. In contrast, hGPRC6A and humanized mouse mGPRC6A are retained intracellularly in ligand naive cells, yet exhibit -arrestin-dependent signaling responses, mitogen-activated protein kinase [i.e., extracellular signal-regulated kinase (ERK)], and p70S6 kinase phosphorylation in response to testosterone, indicating that hGPRC6A is functional. Indeed, testosterone stimulates time- and dose-dependent activation of ERK, protein kinase B, and mTORC1 signaling in wild-type PC-3 cells that express endogenous GPRC6A In addition, testosterone stimulates GPRC6A-dependent cell proliferation in wild-type PC-3 cells and inhibits autophagy by activating mTORC1 effectors eukaryotic translation initiation factor 4E binding protein 1 and Unc-51 like autophagy activating kinase 1. Testosterone activation of GPRC6A has the obligate requirement for calcium in the incubation media. In contrast, in GPRC6A-deficient cells, the effect of testosterone to activate downstream signaling is abolished, indicating that human GPRC6A is required for mediating the effects of testosterone on cell proliferation and autophagy.

Nooh, M. M., A. Kale, and S. W. Bahouth, "Involvement of PDZ-SAP97 interactions in regulating AQP2 translocation in response to vasopressin in LLC-PK cells.", American journal of physiology. Renal physiology, vol. 317, issue 2, pp. F375-F387, 2019 Aug 01. Abstract

Arginine-vasopressin (AVP)-mediated translocation of aquaporin-2 (AQP2) protein-forming water channels from storage vesicles to the membrane of renal collecting ducts is critical for the renal conservation of water. The type-1 PDZ-binding motif (PBM) in AQP2, "GTKA," is a critical barcode for its translocation, but its precise role and that of its interacting protein partners in this process remain obscure. We determined that synapse-associated protein-97 (SAP97), a membrane-associated guanylate kinase protein involved in establishing epithelial cell polarity, was an avid binding partner to the PBM of AQP2. The role of PBM and SAP97 on AQP2 redistribution in response to AVP was assessed in LLC-PK renal collecting cells by confocal microscopy and cell surface biotinylation techniques. These experiments indicated that distribution of AQP2 and SAP97 overlapped in the kidneys and LLC-PK cells and that knockdown of SAP97 inhibited the translocation of AQP2 in response to AVP. Binding between AQP2 and SAP97 was mediated by specific interactions between the second PDZ of SAP97 and PBM of AQP2. Mechanistically, inactivation of the PBM of AQP2, global delocalization of PKA, or knockdown of SAP97 inhibited AQP2 translocation as well as AVP- and forskolin-mediated phosphorylation of Ser in AQP2, which serves as the major translocation barcode of AQP2. These results suggest that the targeting of PKA to the microdomain of AQP2 via SAP97-AQP2 interactions in association with cross-talk between two barcodes in AQP2, namely, the PBM and phospho-Ser, plays an important role in the translocation of AQP2 in the kidney.

Al-Ghobashy, M. A., S. M. Kamal, G. M. El-Sayed, A. K. Attia, M. Nagy, A. ElZeiny, M. T. Elrakaiby, M. M. Nooh, M. Abbassi, and R. K. Aziz, "Determination of voriconazole and co-administered drugs in plasma of pediatric cancer patients using UPLC-MS/MS: A key step towards personalized therapeutics.", J Chromatogr B Analyt Technol Biomed Life Sci., vol. 15, issue 1092, pp. 489-498, 2018. Abstract

n/a

Nooh, M. M., S. Mancarella, and S. W. Bahouth, "Novel Paradigms Governing -Adrenergic Receptor Trafficking in Primary Adult Rat Cardiac Myocytes.", Molecular pharmacology, vol. 94, issue 2, pp. 862-875, 2018 Aug. Abstract

The -adrenergic receptor (-AR) is a major cardiac G protein-coupled receptor, which mediates cardiac actions of catecholamines and is involved in genesis and treatment of numerous cardiovascular disorders. In mammalian cells, catecholamines induce the internalization of the -AR into endosomes and their removal promotes the recycling of the endosomal -AR back to the plasma membrane; however, whether these redistributive processes occur in terminally differentiated cells is unknown. Compartmentalization of the -AR in response to -agonists and antagonists was determined by confocal microscopy in primary adult rat ventricular myocytes (ARVMs), which are terminally differentiated myocytes with unique structures such as transverse tubules (T-tubules) and contractile sarcomeres. In unstimulated ARVMs, the fluorescently labeled -AR was expressed on the external membrane (the sarcolemma) of cardiomyocytes. Exposing ARVMs to isoproterenol redistributed surface -ARs into small (∼225-250 nm) regularly spaced internal punctate structures that overlapped with puncta stained by Di-8 ANEPPS, a membrane-impermeant T-tubule-specific dye. Replacing the -agonist with the -blocker alprenolol, induced the translocation of the wild-type -AR from these punctate structures back to the plasma membrane. This step was dependent on two barcodes, namely, the type-1 PDZ binding motif and serine at position 312 of the -AR, which is phosphorylated by a pool of cAMP-dependent protein kinases anchored at the type-1 PDZ of the -AR. These data show that redistribution of the -AR in ARVMs from internal structures back to the plasma membrane was mediated by a novel sorting mechanism, which might explain unique aspects of cardiac -AR signaling under normal or pathologic conditions.

ghaiad, H. R., M. M. Nooh, M. M. El-Sawalhi, and A. A. Shaheen, "Resveratrol Promotes Remyelination in Cuprizone Model of Multiple Sclerosis: Biochemical and Histological Study.", Molecular neurobiology, vol. 54, issue 5, pp. 3219-3229, 2017 Jul. Abstract

Multiple sclerosis (MS) is a demyelinating neurodegenerative disease, representing a major cause of neurological disability in young adults. Resveratrol is a stilbenoid polyphenol, known to pass blood brain barrier and exhibit antioxidant, anti-inflammatory, and neuroprotective effects in several brain injuries. Cuprizone model of MS is particularly beneficial in studying demyelination/remyelination. Our study examined the potential neuroprotective and pro-remyelination effects of resveratrol in cuprizone-intoxicated C57Bl/6 mice. Mice were fed with chow containing 0.7 % cuprizone for 7 days, followed by 3 weeks on 0.2 % cuprizone diet. Resveratrol (250 mg/kg/day, p.o.) was given for 3 weeks starting from the second week. At the end of the experiment, animals were tested on rotarod to evaluate changes in balance and motor coordination. Mice were then sacrificed to measure the brain content of glutathione, lipid peroxidation products, adenosine triphosphate, and phospho-inhibitory subunit of nuclear factor κB-α. The activities of cytochrome oxidase and superoxide dismutase were also assessed. The gene expression of myelin basic protein, 2',3'-cyclic nucleotide 3' phosphodiesterase, oligodendrocyte transcription factor-1 (Olig1), NF-κB p65 subunit, and tumor necrosis factor-α was also estimated. Luxol fast blue/periodic acid-Schiff stained brain sections were blindly scored to assess the myelin status. Resveratrol effectively enhanced motor coordination and balance, reversed cuprizone-induced demyelination, improved mitochondrial function, alleviated oxidative stress, and inhibited NF-κB signaling. Interestingly, resveratrol increased Olig1 expression that is positively correlated to active remyelination. The present study may be the first to indicate a pro-remyelinative effect for resveratrol which might represent a potential additive benefit in treating MS.

Nooh, M. M., and S. W. Bahouth, "Two barcodes encoded by the type-1 PDZ and by phospho-Ser(312) regulate retromer/WASH-mediated sorting of the ß1-adrenergic receptor from endosomes to the plasma membrane.", Cellular signalling, vol. 29, pp. 192-208, 2017 Jan. Abstract

Recycling of the majority of agonist-internalized GPCR is dependent on a type I-PDZ "barcode" in their C-tail. The recycling of wild-type (WT) ß1-AR is also dependent on its default "type-1 PDZ barcode", but trafficking of the ß1-AR is inhibited when PKA or its substrate serine at position 312 (Ser(312)) are inactivated. We tested the hypothesis that phospho-Ser(312) provided a second barcode for ß1-AR sorting from endosomes to the plasma membrane by determining the role of retromer/WASH complexes in ß1-AR trafficking. Recycling of WT ß1-AR or WT ß2-AR was dependent on targeting the retromer to endosomal membranes via SNX3 and rab7a, and on complexing the retromer to the WASH pentamer via the C-tail of FAM21 (FAM21C). These maneuvers however, did not inhibit the recycling of a phospho-Ser(312) ß1-AR mimic ((S312D) ß1-AR). Knockdown of the trans-acting PDZ protein sorting nexin27 (SNX27) inhibited the recycling of WT ß1-AR and WT ß2-AR, but had no effect on (S312D) ß1-AR∆PDZ or on phosphorylation of WT ß1-AR by PKA at Ser(312). However, depletion of FKBP15, a FAM21C-binding endosomal protein, selectively inhibited WT ß1-AR but not ß2-AR recycling, suggesting divergence might exist in GPCR trafficking roadmaps. These results indicate that two barcodes are involved in sorting WT ß1-AR out of early endosomes. The first and antecedent "barcode" was the "type-1 PDZ", followed by a second reversible "phospho-Ser(312)" verification "barcode". This organization allows tight regulation of ß1-AR density to signaling intensity in conditions associated with aberrant ß1-AR signaling such as in hypertension and heart failure.

Al-Ghobashy, M. A., A. N. ElMeshad, R. M. Abdelsalam, M. M. Nooh, M. Al-Shorbagy, and G. Laible, "Development and Pre-Clinical Evaluation of Recombinant Human Myelin Basic Protein Nano Therapeutic Vaccine in Experimental Autoimmune Encephalomyelitis Mice Animal Model.", Scientific reports, vol. 7, pp. 46468, 2017 Apr 20. Abstract

Recombinant human myelin basic protein (rhMBP) was previously produced in the milk of transgenic cows. Differences in molecular recognition of either hMBP or rhMBP by surface-immobilized anti-hMBP antibodies were demonstrated. This indicated differences in immunological response between rhMBP and hMBP. Here, the activity of free and controlled release rhMBP poly(ε-caprolactone) nanoparticles (NPs), as a therapeutic vaccine against multiple sclerosis (MS) was demonstrated in experimental autoimmune encephalomyelitis (EAE) animal model. Following optimization of nanoformulation, discrete spherical, rough-surfaced rhMBP NPs with high entrapment efficiency and controlled release pattern were obtained. Results indicated that rhMBP was loaded into and electrostatically adsorbed onto the surface of NPs. Subcutaneous administration of free or rhMBP NPs before EAE-induction reduced the average behavioral score in EAE mice and showed only mild histological alterations and preservation of myelin sheath, with rhMBP NPs showing increased protection. Moreover, analysis of inflammatory cytokines (IFN-γ and IL-10) in mice brains revealed that pretreatment with free or rhMBP NPs significantly protected against induced inflammation.

IN CONCLUSION: i) rhMBP ameliorated EAE symptoms in EAE animal model, ii) nanoformulation significantly enhanced efficacy of rhMBP as a therapeutic vaccine and iii) clinical investigations are required to demonstrate the activity of rhMBP NPs as a therapeutic vaccine for MS.

Bahouth, S. W., and M. M. Nooh, "Barcoding of GPCR trafficking and signaling through the various trafficking roadmaps by compartmentalized signaling networks.", Cellular signalling, vol. 36, pp. 42-55, 2017 Aug. Abstract

Proper signaling by G protein coupled receptors (GPCR) is dependent on the specific repertoire of transducing, enzymatic and regulatory kinases and phosphatases that shape its signaling output. Activation and signaling of the GPCR through its cognate G protein is impacted by G protein-coupled receptor kinase (GRK)-imprinted "barcodes" that recruit β-arrestins to regulate subsequent desensitization, biased signaling and endocytosis of the GPCR. The outcome of agonist-internalized GPCR in endosomes is also regulated by sequence motifs or "barcodes" within the GPCR that mediate its recycling to the plasma membrane or retention and eventual degradation as well as its subsequent signaling in endosomes. Given the vast number of diverse sequences in GPCR, several trafficking mechanisms for endosomal GPCR have been described. The majority of recycling GPCR, are sorted out of endosomes in a "sequence-dependent pathway" anchored around a type-1 PDZ-binding module found in their C-tails. For a subset of these GPCR, a second "barcode" imprinted onto specific GPCR serine/threonine residues by compartmentalized kinase networks was required for their efficient recycling through the "sequence-dependent pathway". Mutating the serine/threonine residues involved, produced dramatic effects on GPCR trafficking, indicating that they played a major role in setting the trafficking itinerary of these GPCR. While endosomal SNX27, retromer/WASH complexes and actin were required for efficient sorting and budding of all these GPCR, additional proteins were required for GPCR sorting via the second "barcode". Here we will review recent developments in GPCR trafficking in general and the human β1-adrenergic receptor in particular across the various trafficking roadmaps. In addition, we will discuss the role of GPCR trafficking in regulating endosomal GPCR signaling, which promote biochemical and physiological effects that are distinct from those generated by the GPCR signal transduction pathway in membranes.

Nooh, M. M., and S. W. Bahouth, "Visualization and quantification of GPCR trafficking in mammalian cells by confocal microscopy.", Methods in cell biology, vol. 142, pp. 67-78, 2017. Abstract

G protein-coupled receptors (GPCRs) are recognized as one of the most fruitful group of therapeutic targets, accounting for more than 40% of all approved pharmaceuticals on the market. Therefore, the search for selective agents that affect GPCR function is of major interest to the pharmaceutical industry. This chapter describes methods for measuring agonist-promoted GPCR trafficking, which involves the internalization of the GPCR and its subsequent recycling back to the plasma membrane or retention and eventual degradation. These pathways will be analyzed by confocal cellular imaging, using the β1-adrenergic receptor (β1-AR) as a primary model. A major problem encountered in studying GPCR trafficking is the unavailability of antibodies that would recognize the native receptor in cells or tissues. Therefore, wild-type, point mutants, and β1-AR chimeras are generated as epitope-tagged proteins, which are stably- or transiently expressed in mammalian cells. GPCR are labeled with a fluorophore-conjugated antibody directed against the N-terminal epitope tag. The trafficking of the fluorophore-tagged GPCR between divergent trafficking pathways that result in retention and eventual degradation or recycling and reinsertion into the plasma membrane can be followed by confocal immunofluorescence microscopy techniques outlined in this review.

Elbanna, A. H., M. M. Nooh, E. A. Mahrous, A. E. Khaleel, and T. S. El Alfy, "Extract of Bauhinia vahlii Shows Antihyperglycemic Activity, Reverses Oxidative Stress, and Protects against Liver Damage in Streptozotocin-induced Diabetic Rats.", Pharmacognosy magazine, vol. 13, issue Suppl 3, pp. S607-S612, 2017 Oct. Abstract

Background: Several studies have affirmed the effectiveness of some Bauhinia plants as antihyperglycemic agents.

Objective: We investigated the possible effect of Bauhinia vahlii leaves extract in reducing hyperglycemia and reversing signs of organ damage associated with diabetes in streptozotocin (STZ) rat model.

Materials and Methods: Both polar fraction of the B. vahlii leaves (defatted ethanolic extract [DEE]) and nonpolar fraction (n-hexane extract) were evaluated in vitro for α-glucosidase inhibition and 2,2-diphenyl-1-picrylhydrazyl radical scavenging potential. DEE was selected for further in vivo studies and was administered at two doses, i.e., 150 or 300 mg/kg to STZ-diabetic rats for 4 weeks.

Results: Only DEE exhibited in vitro antioxidant and antihyperglycemic activities and its oral administration at both dose levels resulted in significant reduction in fasting blood glucose and glycated hemoglobin. Furthermore, signs of oxidative stress as indicated by hepatic reduced glutathione, nitric oxide, and malondialdehyde levels were completely reversed. In addition, histopathological examination and measurement of serum aspartate transaminase and alanine transaminase levels showed that DEE protected the liver from signs of liver pathogenesis when compared to diabetic untreated animals and those treated with metformin. Phytochemical analysis of DEE showed high flavonoids content with quercitrin as the major constituent along with other quercetin glycosides.

Conclusion: This study strongly highlights the possible beneficial effect of B. vahlii leaves extract in relieving hyperglycemia and liver damage in STZ-diabetic rats and recommends further investigation of the value of quercetin derivatives in controlling diabetes and ameliorating liver damage associated with it.

SUMMARY: The polar fraction of the Bauhinia vahlii leaves (defatted ethanolic extract [DEE]) exhibited both in vitro antioxidant activity in 2,2-diphenyl-1-picrylhydrazyl scavenging assay and strong α-glucosidase inhibition while the nonpolar fraction (n-hexane extract) failed to show any activity in both assays. DEE was further investigated in streptozotocin-induced diabetic rat model where oral administration of DEE at 2 doses (150 and 300 mg/kg) for 4 weeks resulted in significant reduction in fasting blood glucose and glycated hemoglobin and reversal of oxidative stress signs as indicated by measurement of hepatic reduced glutathione, nitric oxide, and malondialdehyde levels. In addition, histopathological examination and measurement of serum aspartate transaminase and alanine transaminase levels showed that DEE protected the liver from signs of pathogenesis observed in diabetic untreated rats. Phytochemical analysis of DEE showed high flavonoid content with quercitrin as the major constituent (62.9 ± 0.18 mg/mg). Abbreviations used: ALT: Alanine transaminase, AST: Aspartate transaminase, DEE: Defatted ethanol extract, DPPH: 2,2-diphenyl-1-picrylhydrazyl, FBG: Fasting blood glucose, GAE: Gallic acid equivalent, GSH: Reduced glutathione, Hb1Ac: Glycated hemoglobin, HE: Hexane extract MDA: Malondialdehyde, QE: Quercetin equivalent, STZ: Streptozotocin, TAC: Total antioxidant capacity.

Tourism