Younis, S.M., El Hadidi, N.M.N., S. S. Darwish, and M. F. Mohamed, "Enhancing the mechanical strength of Klucel E/CNC composites for the conservation of wooden artifacts", Egyptian Journal of Archaeological and Restoration Studies "EJARS", vol. 13, issue 1, pp. 13-26, 2023. ejars_volume_13_issue_1_pages_13-26.pdf
Gawish, M., El Hadidi, N.M.N., E. Naggar, and Ebeid, N., "A Mamluk Copy of Fawaed El Mawaad: Investigation and Analytical Approach,", Advanced Research in Conservation Science, vol. 4, issue 1, pp. 54-70, 2023. arcs_volume_4_issue_1_pages_54-70.pdf
Montaser, E. M., El Hadidi, N.M.N., and E. A. Amin, "Evaluation of wood gap fillers composed of microcrystalline cellulose, paper pulp, and glass micro balloons", Pigment & Resin Technology, vol. 52, issue 4, pp. 422-430, 2023. AbstractWebsite

This paper aims to provide a deeper understanding of using filling materials that are used to fill gaps in wooden objects, and their
response to changes in the surrounding environment to evaluate wood gap fillers and choose the best material. As a wide variety of materials, but
most of them were unsuitable for filler mixtures. Specific materials were used, which can adapt to changes in wood size in response to changes in
humidity. This research discusses the results of experiments that were conducted to determine how gap fillers composed of glass microballoons,
microcrystalline cellulose and paper pulp fills are mixed with Klucel G, Paraloid B-72 and methyl cellulose as binders, and respond in various
conditions.

Younis, S.M., El Hadidi, N.M.N., Darwish, and M. F. Mohamed, "Preliminary study on the strength enhancement of Klucel E with cellulose nanofibrils (CNFs) for the conservation of wooden artifacts", Journal of Cultural Heritage , vol. 60, pp. 41-49, 2023. AbstractWebsite

Four concentrations of Klucel E and cellulose nanofiber (CNF) nanocomposite were prepared by adding 10, 20, 30, and 50 ml of 2% (wt./v) CNF to 3% (wt./v) of Klucel E to obtain a 100 ml. final volume of the composite. The composites were characterized using transmission electron microscopy (TEM), scan- ning electron microscopy (SEM), and X-ray diffraction (XRD). The addition of CNF to Klucel E improved the mechanical properties of the prepared composites; namely the composite which contains 50% CNF showed an improvement in tensile strength by 102% compared to pure Klucel E. Additionally, Young’s modulus, and hardness increased dramatically with the increase of CNF within the composite. To fur- ther evaluate the nanocomposites, CNF 30% and CNF 50%, were used to treat aged wood specimens. The compression strength of the untreated and treated specimen was measured, where the sample treated with Klucel E/30% CNF composite showed the highest compression strength value with an improvement of 14.5% compared to the untreated wood sample.

Ali, El Hadidi, N.M.N., Moussa, and Botros, W., "Experimental study to assess alternative supports for extensively deteriorated wooden Icons", Shedet, vol. 10, issue 10, pp. 261-278, 2023. shedet_volume_10_issue_10_pages_261-278.pdf
Badr, N. M., M. F. ALI, N. M. N. El Hadidi, and G. Naeem, "Identification of materials used in a wooden coffin lid covered with composite layers dating back to the Ptolemaic period in Egypt", Conservar Património, vol. 29, pp. 11-24, 2018. Abstractnor_-_identification_of_materials.pdfWebsite

A wooden coffin lid, of unknown provenance, with ground and colored layers and an ancient textile, was found at the Egyptian Museum basement in Cairo (JE 36806). The information obtained leads to the conclusion that the coffin lid dates back to the Ptolemaic period in Egypt (332-30 BC), whereas the textile does not belong to the coffin lid. Portable x-ray radiography, photography, optical microscopy, reflected light USB microscopy, Fourier transform infrared spectroscopy with attenuated total reflection (FTIR-ATR), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and Raman spectroscopy were used to assess the deterioration and the structure of the coffin lid and to understand how it was made in the necropolis workshop.

Abdrabou, A., N. M. N. El Hadidi, S. A. M. Hamed, and M. Abdallah, "Multidisciplinary approach for the investigation and analysis of a gilded wooden bed of King Tutankhamun", Journal of Archaeological Science Reports, vol. 21, pp. 553-564, 2018. AbstractWebsite

This paper describes for the first time in detail the investigation of a gilded wooden bed from king Tutankhamun's funerary collection since the discovery of the tomb in 1922; with the aim of identifying the botanical species of wood and the chemical composition of the materials used in the preparatory gilding layers and also the materials used in the previous treatments interventions. The botanical species of wood and textile were identified by observing the thin sections under an optical transmission light microscope; the gilding materials layered on the wood surface and the previous treatment materials were analyzed by several scientific and analytical measures including visible-induced ultraviolet luminescence (UVL), optical microscopy (OM), X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Cross-sections of gilding layers were also performed and studied by OM and environmental scanning electron microscopy (ESEM). The microscopic observation of wood thin sections made it possible to identify the wood used in the legs and angle brackets as Acacia sp, whereas Tamarix sp was used for the foot boards. Four preparation layers were observed on the wood surface via micro-stratigraphic analysis. An interesting black layer made of carbon (from vegetable and animal origin) was found between the wood surface and woven linen layer, the white preparation layer was identified as calcium carbonate and the coarse paste layer proved tobe a mixture of calcite, quartz and hematite. The organic binder was composed of a protein-based material, most probably animal glue. Additionally, different materials were identified from previous treatments interventions. The analyses provided detailed information concerning the original materials and the materials added during the previous treatment interventions, which need to be considered when applying a future conservation plan.

Hamed, N. G., El Hadidi, N.M.N., R. Hamdy, and M. Ghanam, "Study on the deterioration features of an archaeological basket made of palm fronds at the National Museum of Egyptian Civilization", JARCH_Volume 11_Issue 2022_Pages 449-461, vol. 11, issue 2022, pp. 440-451, 2022. Abstractjarch_volume_11_issue_2022_pages_449-461.pdf

One of the baskets preserved in the National Museum of Egyptian Civilization, that appears to be suffering from various deterioration aspects was chosen for this paper, in order to document and record the different features of damage, as a preliminary step for its treatment and conservation. The basket, which is registered under no. 71 at the museum, was one of the finds from the excavations of Cairo University. The documentation of the basket included photography, Photoshop and AutoCAD figures, in which the aspects of deterioration are featured so that non-specialists can easily identify the decay of the basket.
Fragments that had fallen off the basket were used to identify the plants that had been used for making the basket. By comparing the fragile samples under the microscope with fresh fibers of plants that were commonly used throughout the ancient Egyptian periods for making baskets, it was possible to prove that the basket was composed of palm fronds. The wide distribution of date palms in ancient Egypt has been previously confirmed, according to numerous archaeological discoveries, since prehistoric times. Seeds and dates, as well as products manufactured from different parts of the date palm tree have been found on archaeological sites; e.g. baskets, mats, sieves, brushes, ropes and fruit-bearing stems, in addition to the frequent appearance of two types of palm trees in ancient Egyptian mural paintings and inscriptions.
The results of the examination and analysis of the basket indicated that the palm fronds, that had been used in manufacturing the basket have distinctive chemical and physical characteristics, and by studying these characteristics and the extent of the deterioration that occurred over the centuries, it was possible to specify the chemical changes of the functional groups of the plant fibers with the aid of FTIR analysis. These results should aid, in the near future, conservators to perform various treatments to strengthen decayed fibers using some appropriate natural materials, and then prepare reports in which they document the stages of “before - during - after” conservation, which could be a reference for anyone working in the field of plant fiber conservation and treatment.

El Hadidi, N. M. N., and S. A. M. Hamed, "The effect of Preparation layers on the Anatomical Structure and Chemical Composition of Native Egyptian Wood", First Vatican Coffin Conference, Vatican Museums Conference Halls, 22 June 2013 , 2017. Abstracthadidi_hamed.pdf

The effect of the chemical reaction between preparation layers and wood was studied using scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (FTIR). The changes in the anatomical structure and chemical composition in three native Egyptian hardwood types; Ficus sycomorus, Acacia sp., Tamarix sp.; due to the chemical effect of six preparation layers with different components commonly employed in the past to cover the wood surface were characterized and identified. The results obtained from both the SEM and FTIR techniques were almost compatible. The decay patterns of chemical attack in the three types of wood depended on the percentage of lignin and carbohydrates within each type, but the components of the preparation layers caused similar structural and chemical changes according to the acidity or alkalinity of the layer. The results showed that calcium carbonate (chalk) affected and degraded lignin more readily than carbohydrates due to its alkalinity, whereas gypsum, which is acidic, tended to degrade carbohydrates more aggressively than lignin. When the two minerals are used together in the preparation layer this leads to severe degradation in wood structure resulting in embrittlement and loss of wood integrity in the wood surface that lay directly beneath the preparation layer.