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Abstract Plant fungal diseases are the most destructive diseases where the fungal
pathogens attack many economic crops causing yield losses, which affect directly
many countries’ economy. The great Irish Famine in 19th century was due to potato
(a great portion of Irish diets) was attacked by an oomycete pathogen Phytophthora
infestans causing late blight disease which destroyed the potato crop for several years
(1845–1852). Since this date the plant fungal diseases have a great attention from
the researchers. Control of fungal diseases using different fungicides has dangerous
effects on human beings as well as animals by precipitating in the plant tissues and
then transfer to human and animals causing many health complications. Hence, the
biological control of plant pathogenic fungi became the most important issue, due
to the chemical risk to control the fungal diseases. From 1990’s the importance of
using microorganisms was increased as biocontrol agents to decrease the chemical
uses and their hazardous for human and animal health topics. In this chapter, using
of different microorganism as biological control agents of plant fungal diseases were
reviewed, as well as using chemicals in controlling fungal diseases and their effects
on plants, environment and common health impacts.

Keywords Fungal pathogens · Biological control · Chemical control · Biocontrol
agents

1 Introduction

Fungi are non-chlorophytic, spore-forming, eukaryotic organisms.Most of the fungal
species are saprophytes. So, about 20,000 species out of more than 100,000 fungal
species are parasites causing diseases in crops [1–4]. Most of plants may be attacked
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by one or more species of fungal pathogens. On the other hand, the fungal species
can attack only one plant species (Specialist) or many plant species (Generalist).

In the last century, most of diagnostic characters used in the identification of the
phytopathogenic fungi were not evidently accurate, so any identifying character such
as type of fruiting body, spores can scope the search for a particular phylum. Most
diagnosis depends on visual signs and symptoms for diagnosis of fungal diseases [5];
therefore, there were many problems and difficulties in combating these pathogens.
It is very important to identify the plant fungal pathogens to know their taxonomic
groups, which affects significantly for managing these pathogenic fungi.

This chapter is concerned with the use of biological control agents instead of
chemical control against the fungal plant pathogens. The biological control has many
advantages in relation to soil fertility, plant, animal and human health.

2 Fungal Pathogenesis

Fungal pathogenesis is the stage of disease in which the pathogenic fungus is in close
association with the tissue of host. There are three stages:

1. Inoculation: the transfer of pathogenic fungus to the infection area, in which the
plant is invaded (the infection area may be natural openings such as stomata,
hydathodes, or lenticels), wounds or unbroken plant surface.

2. Incubation: the period between the invasion of the pathogenic fungus and the
symptoms appearance.

3. Infection: the appearance of symptoms associated with the establishment and
pathogen spread.

Fungal pathogens cause symptoms which may be general or localized. In most
cases, necrosis of host tissue, stunting, distortions and plant tissue abnormality and
organs changes as a result of fungal infections [6].

One of the important pathogenic fungi characteristics, is virulence (infection abil-
ity). There are many properties of a fungal pathogen that contribute the ability to
spread and destroy the tissue. Most of the virulence factors are enzymes to destruct
plant cell walls [7–9], toxins which are cell killers, exopolysaccharides to block the
path of cell fluid [10, 11], and many substances which interfere cell growth. The
pathogenic species differ in virulence and hence the substances which involved in
the invasion and destruction of host tissue.

3 Control of Fungal Diseases

The fungal plant diseases control is critical to the safe food production, and it cause
serious problems in the use of land for agricultural, water, and other inputs. Plants
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carry inherent disease resistance in both natural and cultivated systems, so control
of fungal diseases is successful for many crops [12].

3.1 Chemical Control

Along the years, many chemicals have been used to control fungal plant pathogens.
Some of these have been substituted as cheaper, effective, or less hazardous sub-
stances [13]. Pruning cuts, stumps and wounds can be protected against fungal
pathogens by painting with special chemicals on the surfaces exposed to environ-
ment. Plant structures such as tubers, cuttings, rhizomes, bulbs and corms which
used in vegetative propagation, are often immersed in chemicals before planting. In
case of trees fungal infections, fungicide was injected inside trees or by pouring into
a hole made into the tissues.

Most of chemicals have been used as fungicides, where they interfere with many
metabolic processes in fungal cells. The biological activity of a fungicide is restricted
to its metabolism in the fungal cell and the chemicals that are transported within the
plant was affected bymetabolism of the plant cell.Many fungicides have low toxicity
to mammals [14].

Antibiotics are chemical substances produced bymicroorganismswhich are capa-
ble of injuring or destroying living organisms. They have been used worldwide to
control bacterial and fungal diseases where many ordinary plant protection methods
have failed. On the contrary, there are few antibiotics are used to control plant fungal
diseases [15].

The development of resistant strains of fungi to chemicals was discussed in the
1970s and the community became aware with health and environmental impact of
these chemicals in l980s and 1990s. The use of agricultural chemicals causes signif-
icant public health problems [16]. The worry about the risk of humans and domestic
animals poisoning, livestock products contaminations, their impact on the beneficial
insects, hazardous residue in food products, ecological imbalances at the level of
microorganism and the possibility of contamination of water with subsequent fish
loss and buildup of residues in groundwater. For that reasons, fungicides should be
avoided and be used only in the heavy infection situations [17].

El-Abyad et al. [7] concluded that under pyradure stress, the virulence of sugar
beet pathogens Rhizoctonia solani and Sclerotium rolfsii was reduced in vivo and
in vitro. The reduction in the virulence ofR. solani and S. rolfsiiwas due to decreased
inoculum potential of the two pathogens under pyradure stress in situ and production
of cell wall degrading enzymes in vitro. Under salinity stress, the resistance shown
by the sugar beet cultivars against infection by R. solani and S. rolfsii was to be due
to the maturation of cell wall composition of these cultivars with age [8].
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3.2 Biological Control

Owing to the hazardous effects inflicted by chemical fungicides on non-target organ-
isms and the surrounding environment, many researchers have focused during the
last few decades on finding an alternative option for control of fungal plant diseases,
that is, biological control. The broad definition of biological control is “suppression
of pathogenic organisms and reducing their effects on hosts as well as favoring the
crops beneficial organisms using wild or modified organisms, genes, gene products,
or biological induction of systemic resistance” [18]. Biological control agents include
many antagonistic microorganisms such as fungi, bacteria, or viruses [19].

3.2.1 Bacteria as Biocontrol Agents

Numerous bacterial species are extensively utilized as biological control agents to
control of several phytopathogenic fungi. In addition, these bioagents have many
beneficial effects on the treated plants. Members of many bacterial genera, epiphytic
and/or endophytic, are used in this concern. The most common bacteria utilized
as bio-control agents include some species of the genera Bacillus, Pseudomonas,
Streptomyces, Rhizobium, Burkholderia, Gluconobacter, Azoarcus, Herbaspirillum,
and Klebsiella [20, 21].

Bacillus spp.

Bacillus Cohn (Firmicutes, Bacillales, Bacillaceae) is a genus of gram-positive, aer-
obic, rods (bacilli) bacteria, which can form spores, and comprises 377 species and
8 subspecies [22]. Members of this genus have a wide distribution and found in
soil, decaying matter, water, air, in/on living plants and animals, and in some severe
habitats [23]. Bacillus spp. have a great importance and been involved in many uses
in agricultural, industrial, and pharmaceutical applications such as production of
diverse antibiotics, lipopeptides, enzymes, and bioactive secondary metabolites [24,
25]. Several antibiotics are known to be produced by Bacillus spp. such as fengycin,
sublichenin, subtilosin A, gramicidin, sublancin, bacillomycin, tochicin, bacitracin,
polymyxin, bacilysocin and neotrehalosadiamine [26, 27]. A broad set of hydrolytic
enzymes are produced also by Bacillus spp. like chitinases, β-1,3(4)-glucanase, pro-
teases, and lipases [28, 29]. The high capability of Bacillus spp. for production of
these diverse of structurally and functionally different antagonistic substances make
them pioneers in the field of the bio-fungicides. Moreover, most of Bacillus spp. uti-
lized as biocontrol agents possess a growth enhancing activity on the host plant. Of
the world biopesticides market, commercial B. thuringiensis-based products share
about 90% [30].

Several studies have elucidated the use of Bacillus spp. in the biological control
of different pathogenic fungi [28, 31–33]. The most common Bacillus spp. utilized
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in biocontrol of plant diseases include B. subtilis, B. thuringiensis, B. fortis, B. amy-
loliquefaciens, B. vallismortis,B. pumilus,B. sphaericus,B. cereus,B. licheniformis,
B. polymyxa, B. megaterium, B. mycoides, B. mojavensis, and B. pasteurii [25, 34].
Chen et al. [35] investigated the antifungal activity of the potent strain B. velezen-
sis LM2303 which achieved a control efficiency of 72.3% against wheat Fusarium
head blight caused by F. graminearum, in the field. Moreover, this strain showed
antagonistic potency in vitro against different pathogenic fungi. Genomic mining
of B. velezensis LM2303 results in identification of 13 biosynthetic gene clusters
encoding for antimicrobial substances (fengycin B, iturin A, surfactin A, butirosin),
as well as siderophores (bacillibactin and teichuronic acid). Furthermore, encoding-
genes responsible for root colonization, growth enhancement, and immune system
induction were identified. Generally, the direct biocontrol mechanisms exerted by
Bacillus spp. against the phytopathogenic fungi include antibiosis via biosynthesis
of various antifungal substances (antibiotics, lipopeptides, enzymes), competition
for space and/or nutrients by colonizing the plant surface or production of various
siderophores, while, the indirect mechanisms include induction of the plant systemic
resistance leading to triggering many fungitoxic substances such as phenolic com-
pounds and defense-related enzymes, as well as plant growth promotion via inducing
the biosynthesis of plant growth regulators [34].

Pseudomonas Spp

Pseudomonas Migula (Gammaproteobacteria, Pseudomonadales, Pseudomon-
adaceae) is a genus of aerobic, gram-negative, rods, motile bacteria, which cannot
form spores, and contains 254 species and 18 subspecies [22, 36]. Pseudomonas
spp. can resist diverse biotic and abiotic extreme conditions, use numerous organic
substances, and exhibit high metabolic and physiological diversity. Owing to their
elevated resistances, they can inhabit a wide range of habitats such as soil, aquatic
environments, and air, in/on plants or animals [37]. This distribution is ascribed to
the capability to synthesize a long list of antagonistic substances enabling them to
compete with the surrounding microbiota such as phenazines, pyochelin, rhizoxins,
pyrrolnitrine, hydrogen cyanide, 2,4-diacetylphloroglucinol, and pyoluteorin [38].
Although some members of the genus Pseudomonas are phytopathogenic, many are
of great benefit providing the plant with protection against the attacking pathogens.

The biocontrol mechanisms utilized by Pseudomonas spp. include rivalry for
nutrients and space, biosynthesis of antagonistic substances and enzymes, or by trig-
gering plant immune system against various pathogenic fungi [39]. Furthermore,
some Pseudomonas spp. promote the plant growth, and inhibit soil-borne pathogens
[40]. Roles of Pseudomonas spp. in enhancing the plant growth include biosynthesis
of growth regulators, nitrogen fixation, phosphate mineralization, as well as seques-
tering iron by secretion of siderophores [41]. Many Pseudomonas spp. are widely
utilized as bioagents against many fungal diseases and commercially represent a big
sector in the biopesticides market. Aielloa et al. [42] studied the biocontrol ability of
the endophyte P. synxantha DLS65 against the postharvest brown rot of stone fruit



342 Y. M. Rashad and T. A. A. Moussa

in vitro and in vivo. A considerable growth suppression of both fungi was achieved
by using P. synxantha in vitro. In addition, a significant reduction in the disease
symptoms was also reported in the storage even after 20 days at 0 °C. The rivalry for
nutrients or space, secretion of fungitoxic substances or volatile organic compounds
were named to be a projected as biocontrol mechanisms by P. synxantha.

Streptomyces spp.

StreptomycesWaksman and Henrici (Actinobacteria, Actinomycetales, Actinomyc-
etaceae) is a bacterial genus which include aerobic, filamentous, gram-positive
species that produce fungus-like mycelia and aerial hyphae with branches that carry
chains of spherical to ellipsoidal spores [43]. Currently, this genus comprises 848
species and 38 subspecies with annual increase in the species number [22]. Mem-
bers of genus Streptomyces have wide distribution and found in various habitats such
as soil, water, decaying vegetation, endophytic, epiphytic, even in extreme habitats
such as deep-sea sediments, volcanic soils, frozen soils, and desert soils [44, 45].
Streptomyces spp. are highly recognized as antibiotics, enzymes, and bioactive sec-
ondarymetabolites producers [46, 47]. Indeed, antibiotics produced by Streptomyces
genus represent the largest share, approximately two-thirds, of the known antibiotics
so far, and their number has exponentially increased every year [48, 49]. The most
common antibiotics identified from Streptomyces spp. are streptomycin, pimaricin,
neomycin, phenalinolactones A-D, cypemycin, warkmycin, and grisemycin [50, 51].
Various enzymes are also reported to be produced by Streptomyces spp. like chiti-
nases, proteases, peroxidases, β-1,3 glucanases, laccases, and tyrosinases [46, 52,
53]. Furthermore, a large set, around 7600, of bioactive compounds synthesized by
Streptomyces spp. like anticancer, antiviral, antihypertensive, immunosuppressive,
and antioxidant were also reported [54].

Biocotrol of phytopathogenic fungi using members of genus Streptomyces has
been extensively investigated by various researchers [55–57]. Different species are
common in this concern such as S. lydicus, S. vinaceusdrappus, S. griseoviridis, S.
griseorubens, S. tsusimaensis, S. griseofuscus, S. spororaveus, S. tendae, S. humidus,
S. hygroscopicus, S. caviscabies, S. philanthi, S. sindeneusis, and S. flavotricini [58–
61]. Of sixteen endophytic actinobacteria screened for their fungitoxic effect against
pathogenic mycoflora, S. asterosporus SNL2exhibited the strongest antifungal activ-
ity in vitro, especially againstF. oxysporum f. sp. radicis lycopersici, the causal agent
of tomato root rot [62]. Moreover, application of this isolate led to a considerable
reduction the severity of tomato root rot by 88.5%. In another study, the fungitoxic
activity of the cultural secondarymetabolites produced by S. griseorubens E44Gwas
evaluated in vitro on the growth and ultrastructure of mycelial cells of F. oxyspo-
rum f. sp. lycopersici [63]. Investigations using the transmission electronmicroscope
showed many noxious effects in the fungal mycelia after treatment with the culture
filtrate at 400 μL.

The ultra-cytochemical study revealed the digestion of chitin of the cell wall after
the exposure to the bacterial filtrate, indicating the production of the lytic enzyme
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chitinase by S. griseorubens E44G as a biocontrol mechanism. The biocontrol modes
of action utilized by Streptomyces spp. include physical contact (hyperparasitism),
rivalry for space/nutrients, antibiosis via biosynthesis of hydrolytic enzymes, antibi-
otics and fungitoxic substances [56]. Indirect mechanisms via triggering plant resis-
tance, and/or improving the plant growth may be involved also [57]. However, the
biocontrolmechanisms used by a biocontrol agent are affected by the other conditions
like soil type, temperature, pH, humidity, and existence of surrounding microorgan-
isms [61].The S. aureofaciens filtrate was inhibited the germination of F. solani and
in vivo seed coating was the most efficient method for controlling the pathogenicity
of F. solani by S. aureofaciens [64].

Rhizobium spp.

Members of Rhizobium Frank (Alphaproteobacteria, Rhizobiales, Rhizobiaceae) are
aerobic, rod-shaped, gram-negative, motile, non-spore producing, nitrogen-fixing
bacteria, which comprises 112 species. Rhizobium spp. are widely distributed and
found as free-living in soil or colonize legumes roots formingnodules, nitrogen-fixing
symbioses [22, 65]. Members of genus Rhizobium are categorized according to their
associated leguminous plant, and growth rate. The most known species include R.
leguminosarum,R. phaseoli,R. trifolii,R. lentis,R. japonicum,R. aggregatum, andR.
sullae. In addition to nitrogen fixating and growth enhancing effects (phytohormones
biosynthesis), Rhizobium spp. are well known as biological control agents against
numerous pathogenic mycoflora like Rhizoctonia solani, F. solani, F. oxysporum,
Macrophomina phaseolina, Sclerotinia sclerotiorum, Pythium sp. and Sclerotium
rolfsii [66–68].

The antagonistic modes of action utilized by Rhizobium spp. include rivalry for
space and nutrients by secretion of siderophores, in addition to antibiosis via produc-
tion of antibiotics such as bacteriocins and trifolitoxin, lytic enzymes, and fungitoxic
substances such as hydrogen cyanide. Furthermore, triggering of plant immune sys-
tem against attacking pathogens is widely reported for many species of Rhizobium
via induction of hypersensitivity responses, defense-related genes, and production of
antifungal compounds andmolecules [69]. Volpiano et al. [70] investigated the antag-
onistic activity of different Rhizobium strains toward S. rolfsii in vitro and in vivo.
A mycelial growth inhibition up to 84% in vitro and a significant decrease in the
incidence of collar rot of common bean by 18.3 and 14.5% in the pot and field exper-
iments were reported by strains SEMIA 439 and 4088. In addition, the antagonistic
mechanism through volatile compounds by strain SEMIA 460 was also reported.
Hemissi et al. [71] investigated the antifungal potential of some Rhizobium strains
against R. solani in vitro and the incidence of Rhizoctonia root rot of chickpea under
greenhouse conditions. Among the 42 tested Rhizobium strains, 24 isolates exhib-
ited varied extent of antifungal activity against R. solani in vitro. Biosynthesis of
fungitoxic substances and phosphorous solubilization were recognized as biocontrol
mechanisms by some tested Rhizobium strains. In addition, a considerable disease
reduction was recorded by applying these strains.
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Others

Other genera including Burkholderia, Gluconobacter, Azoarcus, Herbaspirillum,
and Klebsiella are known also as antifungal agents against phytopathogenic fungi,
and plant growth-promoting rhizobacteria [72, 73]. Many Burkholderia species
are known to produce antifungal substances like phenazine iodinin, and hydrolytic
enzymes. Rivalry for space and/or nutrients with other microorganisms and trigger-
ing plant immunity against pathogens were also reported. Anti-spore germination
activity by Burkholderia spp. was recorded against spores of Penicillium digitatum,
S. sclerotiorum, Aspergillus flavus, A. niger, Phytophthora cactorum, and Botrytis
cinereal [74]. Detoxification and degradation of the virulence factor of a pathogen
is another biocontrol mechanism utilized by some bacterial biocontrol agents. Some
strains of B. cepacia and B. ambifariahave the ability to hydrolyze the mycotoxin
fusaric acid, responsible for root rot and wilt diseases, which produced by some
pathogenic Fusarium spp., as well as inhibit their mycelial growth [75]. Detoxifica-
tion of fusaric acid by K.oxytoca was reported also via biosynthesis of detoxificating
proteins that attach to the toxins [76].

The biocontrol activity of B. gladioli pv. agaricicola was studied against Verticil-
lium dahliae, in vitro and in situ on tomato [77]. A significant fungitoxic effect was
recorded by the bacterial strain ICMP12322 in vitro against the pathogenic fungus.
In addition, a considerable disease reduction was achieved by application of this
strain in the pot experiment. In another study, Bevardi et al. [78] reported a potent
antagonistic activity byG. oxydans against the bluemold fungusP. expansum.Apro-
nounced inhibition in the fungal growth up to 95%was achieved in vitro test. In vitro
biocontrol activity of three growth-promoting rhizobacteria Azospirillum brasilense
SBR, Azotobacter chroococcum ZCR, and K. pneumoneae KPR was investigated
against the pathogenic mycoflora F. oxysporum, S. sclerotiorum, and Pythium sp.
and in pots on cucumber [79]. A significant inhibition in fungal growth up to 100%
in vitro and 56% decrease in the damping-off incidence were recorded by applying
the tested bacterial biocontrol agents.

3.2.2 Fungi as Biocontrol Agents

Many antagonistic fungi have been extensively utilized as bio-fungicides against
various phytopathogenic fungi. Owing to their widespread occurrence, persistence,
multifunctional antifungal activities against plenty of pathogenicmycoflora, and rela-
tive ease of culturing andmaintenance in vitro, they have attained a broad approbation
in this concern. The most common fungi used as bio-control agents include members
of the genera Trichoderma, Gliocladium, Clonostachys, Penicillium, Chaetomium,
Myrothecium, Laetisaria, Coniothyrium, and arbuscular mycorrhizal fungi.
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Trichoderma spp.

Trichoderma Pers. (Ascomycota, Sordariomycetes, Hypocreales) is a prevalent fun-
gal genus of increasing interest due to their diverse bioactivities, global distribu-
tion, varied metabolites production, and competitive and reproductive potentiality.
Members of Trichoderma found mostly in all types of ecosystems as soil-borne, on
decaying plant materials, endophytic, epiphytic, on other fungi, and/or in aquatic
habitats [80–83].

Many species of Trichoderma genus are geographically limited, some are widely
distributed, while, few have a cosmopolitan distribution [84]. According to Bissett
et al. [85], more than 250 of Trichoderma spp. have been listed. However, in the
recent few years, more than 45 new species have been described [86–93]. Species
of genus Trichoderma can synthesis several hydrolytic enzymes and antimicrobial
substanceswhich provide themwith ecological dominance under varied environmen-
tal conditions and the ability to perform many biological functions. One of the most
important characteristics of Trichoderma spp. is the high and numerous potentialities
to antagonize a broad spectrum of fungal phytopathogens which qualify them as the
most common bio-control agents. Indeed, commercial Trichoderma-based products
represent more than 50% of fungal bio-fungicides market.

During the last years, use of Trichoderma spp. as bio-fungicides against various
phytopathogenic fungi has attracted high scientific attention [94–96]. For example,
El-Sharkawy et al. [97] studied foliar application of two isolates of T. harzianum and
T. viride as bio-fungicides against wheat rust under greenhouse conditions. A signifi-
cant anti-spore germination of Puccinia graminis uredospores was recorded in vitro.
Under greenhouse conditions, a considerable reduction in the disease measures and
improvement of wheat growth and yield parameters were reported. The antifungal
activity was attributed to their production of some antifungal secondary metabolites.
The antifungal potentiality of T. harzianum WKY1 against Colletotrichum subline-
olum, causative of sorghum anthracnose, was studies by Saber et al. [98]. In vitro, a
pronounced growth inhibition in the mycelia of C. sublineolum was recorded as well
as a decrease in the disease severity under greenhouse conditions.

Both direct and indirect biocontrol mechanisms evolved by Trichoderma species
have been discussed including rivalry for space or nutrients, antibiosis, and myco-
parasitism. In addition, triggering of plant immune responses and enhancement of
their growth were also reported [99]. However, predominance of one mechanism
does not mean that the others are not contributed to the antagonistic behavior of
the bioagent. Production of a large set of enzymes like cellulases, amylases, lipases
and pectinases, as well as secondary metabolites such as siderophores, in addition to
their high reproductive capacity provides Trichoderma spp. with antagonistic ability
to compete the fungal pathogens for space and/or nutrients [100].

Biosynthesis of numerous antifungal lytic enzymes [101], as well as various
antibiotic, secondary metabolites, volatile, and nonvolatile antifungal compounds
by Trichoderma species are well known and recognized. In addition to phenolic
compounds, production of various antibiotics like, trichodermol, viridian, gliovirin,
harzianolide, harzianum A, trichodermin and koninginins has been also reported
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[102]. However, it is difficult to differentiate between competition and antibiosis in
agar plate. The inhibition zones result from antibiosis are indistinguishable from
those produced by the nutrients shortage.

Mycoparasitism (obtaining nutrients from the fungal pathogen) may be con-
tributed to the antagonistic behavior of some Trichoderma spp. [103–105]. How-
ever, the ability to parasitize pathogenic fungi is not a simple process; it involves
specificity between both fungi. It depends primarily on the chemical attraction by
the pathogenic fungus and the cell signaling in Trichodermawhich includes recogni-
tion (sensing their prey), as well as capability for production of lytic enzymes [106].
A successful mycoparasitic process involves chemical recognition by Trichoderma
sp. to their prey fungus, chemical attraction, connection, coiling around their fun-
gal prey and penetrating them mechanically through sending appressoria into the
prey mycelium or chemically through secretion of cell-wall hydrolytic enzymes, and
sometimes secretion of some antifungal secondary metabolites [107].

Moreover, some Trichoderma spp. are identified as endophytes [108–111] that
can trigger the plant systemic acquired resistance against attaching pathogens [109].
Moreover, they induce plant tolerance against drought and salinity [112]. Up-
regulation of different defense-related genes are also reported as a response to the
endophytic Trichoderma, in addition to some phytochemicals [113]. In this regard,
Park et al. [110] recorded amarkedly inhibition in the disease development in ginseng,
caused by B. cinerea and Cylindrocarpon destructans, as a response to application
of the endophytic T. citrinoviride.

Gliocladium spp.

Gliocladium spp. (Ascomycota, Sordariomycetes,Hypocreales) are frequently found
as soil-borne, endophytes, epiphytes, on other fungi, on plant debris, freshwater, and
coastal soils [59, 114, 115]. Gliocladium spp. have a worldwide distribution and
exceptional ecological versatility. They inhabit numerous ecosystems like tropical,
temperate, subarctic, and desert areas [116]. Species of this genus are reported as
producers of a vast range of secondary metabolites which exhibit different bioactiv-
ities such as antifungal, antibacterial, nematicidal, anti-tumour activities, as well as
hydrocarbons and their derivatives (myco-diesel), and ligninolytic enzymes [117–
120]. Taxonomically, many Gliocladium spp. were reclassified and moved to the
genusClonostachys due to significant molecular andmorphological differences from
the type form of Gliocladium spp. For instance, G. catenulatum is renamed to C.
rosea f. catenulata, and G. roseum is renamed to C. rosea f. rosea [121, 122]. Fur-
thermore, other species were transferred to the genus Trichoderma such as G. virens
which is now classified as T. virens.

Species of the genus Gliocladium are widely known as bio-fungicides for many
pathogenic mycoflora. The most common species used as biocontrol agents are C.
rosea f. rosea (syn. G. roseum), C. rosea f. catenulata (syn. G. catenulatum), and T.
virens (syn. G. virens). Gliocladium spp. have a potent antagonistic activity against
various fungal mycopathogens like P. ultimum, B. cinerea, F. graminearum, F. udum,
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Phytophthora cinnamomi, P. citricola, Alternaria alternata, Verticillium spp. and
Chaetomium spp. [123–125]. Borges et al. [126] recorded significant biocontrol
efficiency for C. rosea against tomato gray mold. Application of C. rosea recorded
100%biocontrol efficiency in stem and≥90% in the entire tomato plant. Tesfagiorgis
et al. [127] recorded a disease reduction (90%) in powdery mildew of zucchini when
treated with C. rosea under greenhouse conditions.

Production of different antagonistic metabolites by Gliocladium spp. has been
reported such as gliotoxin and viridin by G. flavofuscum [128]. According to the
type of the antibiotic produced by strains of T. virens they can be differentiated into
two groups (P and Q). Members of group P synthesis gliovirin which poses narrow
antifungal spectrum activity, primarily, against oomycetes [129], while, members
of group Q synthesis gliotoxin which poses a broad range of antifungal as well as
antibacterial activities [130]. Another species of Gliocladium has been reported as a
producer of a set of volatile antifungal substances against P. ultimum and V. dahliae.
Of them, the antifungal antibiotic annulene was identified [131]. Mycoparasitism
against different fungal pathogens was also reported as a proposed biocontrol mode
of action of Gliocladium spp. [132, 133]. In a recent study, 199 candidate mycopar-
asites isolated from agricultural soils in southwestern Greece, of them, the isolate
Gliocladium sp. G21-3was themost aggressivemycoparasite and a competent antag-
onist against sclerotia of S. sclerotiorum [134].

Penicillium spp.

Penicillium Link (Ascomycota, Eurotiomycetes, Eurotiales) is a diverse genus which
contain more than 400 species with a cosmopolitan distribution. Penicillium spp. are
found as soil-borne, on decaying crops, on wood, fresh and dry fruits, water, and in
indoor air. They are well known as organic materials decomposers, causative of food
spoilage, producers of mycotoxins and enzymes, air allergens, and/or causative of
postharvest decay of some crops [135].Members of genusPenicillium arewidely rec-
ognized as synthesizers of diverse bioactive substances such as antibiotics, antitumor
agents, nephrotoxin, and ergot alkaloids [136].

Some Penicillium species are known as bio-fungicides against fungal diseases.
The endophytic P. oxalicum T 3.3 exhibited an aggressive antifungal activity against
anthracnose of dragon fruit, caused by Colletotrichum gloeosporioides. Production
of β-glucanase and chitinase was reported for this biocontrol agent [137]. Sreevidya
et al. [138] reported a remarked biocontrol activity ofP. citrinum against botrytis gray
mold of chickpea in the greenhouse and field. The antifungal activity was attributed
to their production of mycotoxin citrinin. In addition, production of lytic enzymes
like protease and glucanases were also reported. The biocontrol activity (75%) of
P. citrinum was reported on charcoal rot of sorghum under greenhouse condition
[139]. De Cal et al. [140] reported a markedly decrease in the powdery mildew of
strawberry in vitro and in vivo via application of P. oxalicum.
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Chaetomium spp.

Chaetomium spp. Kunze (Ascomycota, Sordariomycetes, Sordariales) are filamen-
tous fungi which exist as soil-borne, air-borne, endophytic, epiphytic, on any cellu-
lose containing materials, and on plant debris. It comprises more than 160 described
species with a cosmopolitan distribution [141]. Some of these fungi act as bio-
fungicides to control numerous pathogenic mycobiota like A. raphani, A. brassici-
cola, and P. ultimum. Zhao et al. [142] reported a potent antagonistic activity by
the endophytic C. globosum CDW7 against rape sclerotinia rot, caused by S. scle-
rotiorum. Seven secondary metabolites were identified from their culture filtrate
including the antifungal metabolites flavipin, chaetoglobosin A-E and Vb, for which
their antagonistic potential was attributed. Hung et al. [143] reported also an in vitro
mycelial growth inhibition ofP. nicotianae by 50 ~ 56%when grew against the antag-
onists C. globosum, or C. cupreum in biculture tests and against their crude extracts.
Furthermore, C. cupreum parasitized P. nicotianae and degraded their mycelia after
30 days of incubation. In pot experiment, use of Chaetomium spp. lowered the dis-
ease severity of citrus root rot by 66–71%. Chaetomium species have been reported
as producers of lytic enzymes which involved in the mycoparasitism [144, 145]. In
addition, numerous antifungal secondary metabolites were reported from the cul-
ture filtrates of Chaetomium spp. like flavipin, chaetoviridins, chaetoglobosins, and
rubrorotiorin [142, 146, 147].

Myrothecium spp., Laetisaria spp., and Coniothyrium Minitans

Myrothecium spp. Tode (Ascomycota, Sordariomycetes, Hypocreales) are filamen-
tous fungi that poses a universal distribution and found as soil-borne or on plants. It
comprises more than 35 described species [148].Myrothecium spp. are recognized as
producers of various bioactive substances such as trichothecenesmycotoxins (roridin
A, verrucarin A, and 8beta-acetoxy-roridin H) [149, 150], as well as lytic enzymes
like proteinases and lipases [151]. Some ofMyrothecium spp. have a potential antag-
onistic behavior against several fungal phytopathogens, weeds, insects, and nema-
todes [152, 153]. Barros et al. [154] reported a biocontrol activity of Myrothecium
sp. against S. sclerotiorum in vitro and in vivo experiments. A considerable decrease
in the soybean mold disease up to 70%was recorded by application of the biocontrol
agent.

Laetisaria Burds. (Basidiomycota, Agaricomycetes, Corticiales) is a genus of
4 species with widespread distribution. The soil-borne fungus L. arvalis is well
recognized as a bio-fungicide against some pathogenic mycoflora. Among the 28
biocontrol agents tested by Brewer and Larkin [155], the isolate L. arvalis ZH-1
significantly reduced the disease incidence of potato black scurf by 60%. In another
study, soil treatment with L. arvalis led to a markedly decrease in tomato damping-
off, caused by P. indicum, recording 72% seed germination [156]. Furthermore,
Bobba and Conway [157] reported the competition for nutrients as an antagonistic



Biocontrol Agents for Fungal Plant Diseases Management 349

mechanism by L. arvalis against the pathogenic fungus S. rolfsii in the competitive
colonization experiment.

Coniothyrium minitansW. A. Campb. (Ascomycota, Dothideomycetes, Pleospo-
rales) is a worldwide distributed fungus. It is a naturally obligate mycoparasite on
sclerotia of the fungal pathogens S. sclerotiorum, S. minor, S. trifoliorum, and S.
rolfsii [158, 159]. In this regard, Chitrampalam et al. [160] studied the antifungal
activity of C. minitans on S. minor, the causal of the lettuce drops, in vitro and
in vivo. A total sclerotial mortality was recorded in the culture plates. In the field
experiment, a significant reduction in the lettuce drop was achieved; this reduction
was correlated with a reduction in the existence levels of the sclerotia. During the
mycoparasitic process by C. minitans, the outer pigmented layer of the sclerotia has
been mechanically penetrated and enzymatically using lytic enzymes [161]. How-
ever, the antibiosis mechanism via production of the antifungal secondary metabolite
macrosphelide A was also reported [162].

Arbuscular Mycorrhizal Fungi (AMF)

AMF are soil fungi (Mucoromycota, Glomeromycotina) which comprise about 300
species in 3 classes, 5 orders, 15 families and 38 genera [163, 164]. They are obligate
endophytes that live in mutualism with roots of 80% of the vascular plants [165].
AMF are found in all terrestrial ecosystemswith varied extent of pH, salinity, organic
matter, and environmental conditions. They have a cosmopolitan distribution, where
they have been reported from all continents [166]. In the arbuscular mycorrhizal
association, the fungus attains carbon from the photosynthesis of the plant, while
the plant takes many advantages from the fungus. AMF supply the mycorrhizal
host with water, and minerals via their extra radical hyphal network. Moreover,
AMF improve the plant growth and metabolic processes, increase their resistance to
drought, salinity, heavy metals, as well as enhance their immunity against various
pathogenic mycobiota [167].

Many researchers have extensively studied the biocontrol activity of AMF to
control different types of phytopathogenic fungi like A. solani, Aphanomyces eute-
iches, Cercospora arachidicola, Cercosporidium personatum, Erysiphe graminis,
F. solani, F. verticillioides, Gaeumannomyces graminis, M. phaseolina, P. cacto-
rum, P. aphanidermatum, R. solani, S. cepivorum, and V. dahliae [168–172]. Olowe
et al. [173] investigated biocontrol activity of Glomus clarum and G. deserticola
against maize ear rot. A considerable reduction in the disease effects on the plant
growth parameters was recorded by application of AMF. El-Sharkawy et al. [97]
investigated the biocontrol of wheat stem rust by using AMF and Trichoderma spp.
under greenhouse conditions. A markedly decrease in the disease measures as well
as enhancement in the growth and yield parameters were recorded. Moreover, an
induction in the activities of some defensive enzymes and total phenol content were
also recorded. The likely biocontrol mechanisms exerted by AMF comprise direct
rivalry with other soil-borne pathogenic fungi for nutrients, space, and colonization
sites, changing of the soil microbial composition in the rhizosphere area [174, 175].
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Furthermore, AMF may indirectly decrease the losses resulting from the disease
by damage compensation, growth improvement and triggering the plant immunity
against the phytopathogens attack [170, 172]. In this regard, Abdel-Fattah et al. [176]
reported triggeringmultiple defense-related reactions in bean plants against infection
with Rhizoctonia root rot as a result of application of AMF. Some ultrastructural and
biochemical responses were recorded including cell-wall thickening, cytoplasmic
granulation, increase in the cell organelles number, nuclear hypertrophy, and accu-
mulation of fungitoxic compounds (phenolics) and triggering of defensive enzymes
activity. However, achieving a genetic polymorphism (86.8%) as well as triggering
of the transcriptional expression level of defense-related genes were also reported
[177].

3.3 Induction of Systemic Resistance and Defense-Related
Genes in Plant

Plants have a strategy against fungal infection by evolving multiple immune mecha-
nisms [178, 179]. Thefirst immune response is started by the recognition of pathogen-
associated molecular patterns conserved (PAMPs), like lipopolysaccharides, flag-
ellin, chitin and glycoproteins by what is called Pattern-Recognition Receptors
(PRRs) which located on the surface of cell [180]. The understanding of PAMP stim-
ulates PAMP-triggered immunity (PTI), including oxidative burst, MAPK (mitogen-
activated protein kinase) activation, deposition of callose, defense-related genes
induction, and antimicrobial compounds accumulation [181–183]. The pathogens
can successfully suppress PTI by secreting different effectors, like small RNAs and
proteins to suppress host PTI in the host cells [184–186]. On the other hand, plants
have secreted resistant proteins to recognize the specific effectors of pathogen, lead-
ing to an effector-triggered immunity (ETI), whereas ETI is more rapid and powerful
than PTI and stimulates comparable defense responses set as in PTI but in an accel-
erated and powerful way [178, 179, 183, 187].

The starting of PTI or ETI from the infected loci often stimulates resistance
induced in tissues that give resistance against a wide range of pathogens [39]. This
systemic acquired resistance (SAR) is often correlated with level of salicylic acid
(SA) increased and regulate the activation of pathogenesis related (PR) genes and
comprises one or more long-distance signals that increase the capacity to enhanced
defensive in intact parts of plant [188]. Also, beneficial microbes in the rhizosphere
can induce systemic resistance (ISR). In most cases, ISR is SA-independent and
develops without accumulation of PR proteins. P. fluorescens is still able to induce
ISR that does not synchronize with enhanced SA levels.
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4 Case Study

In Egypt, many researchers concerned with the biological control of fungal diseases,
my research group studied many bioagents for control of many plant fungal diseases
such as Streptomyces spp. [64, 189], Pseudomonas spp. and Bacillus spp [190–192]
and some fungal species such as Gliocladium spp., Paecilomyces spp., Penicillium
spp. and Trichoderma spp. [189]. The Trichoderma harzianum was used widely as
a bioagent, which observed the most potent organisms among bacterial and fungal
species used against sugarbeet pathogen R. solani in the study carried out byMoussa
[189] and shown in Table 1. The mechanism of T. harzianum to control the fun-
gal pathogens was by mycoparasitism on the pathogen hyphae and observed using
scanning electron microscope (SEM) (Figs. 1, 2 and 3).

Hyphal interactions between T. harzianum and R. solani were observed by scan-
ning electron microscopy. T. harzianum attached to the host by hyphal coils (Figs. 1,
2 and 3).

Table 1 Control of sugar
beet root rot disease caused
by R. solani with different
antagonists

Antagonist Disease incidence (%)

Seed coating Seed soaking Soil pre-
inoculation

Control 42.53a 71.43 75.68aa

Bacteria

Bacillus
cereus

14.85defg 66.4bc 48.18a

B. subtilis 10.67efgha 81.2a 52.91a

Fungi

Gliocladium
deliquescens

15.51def 51.9c 20.68b

Paecilomyces
marquandii

8.8fghb 52.3c 50.93a

Penicillium
vermiculatum

10.12efgh 65.5bca 50.93a

Trichoderma
harzianum

6.48 h 62.9bc 17.16b

T. koningii 13.53efg 69.5ab 48.18a

T. pseu-
dokoningii

25.94b 63.6bc 52.9a

T. viride 25.63bc 60.5bc 48.18a

aValues within a row followed by the same letter are not signifi-
cantly different at 5% level according to Duncan’s multiple range
test (DMRT)
bValues within the column followed by the same letter are not
significantly different at 5% level (based on DMRT)
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Fig. 1 Scanning electron micrographs of Trichoderma harzianum hyphae interacting with those of
Rhizoctonia solani in which hypha of T. harzianum coiling around and penetrating one of R. solani.
Partial degradation of host cell wall can be observed (X 8500) [190]

Fig. 2 Scanning electron
micrographs of Trichoderma
harzianum hyphae
interacting with those of
Rhizoctonia solani in which
hooks of T. hrzianum
attached to hyphae of R.
Solani (X 2000) [190]

Fig. 3 Scanning electron
micrographs of Trichoderma
harzianum hyphae
interacting with those of
Rhizoctonia solani in which
appressorium-like structure
formed by T. harzianum,
attached to a hyphae of R.
solani with partial
degradation of host cell wall
(X 8500) [190]
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In another case study, the research was developed to study the effect of bioagent
on the host plant as well as fungal pathogens. Some bacterial species were known
as plant growth promoting rhizobacteria (PGPR) which secret some compounds to
enhance plant growth, it was found that all growth parameters of Cucumi ssativus L.
cv. Market were increased in absence and presence of the fungal pathogen P. aphani-
dermatum in greenhouse experiment as shown in Table 2. On the other hand, the use
of P. aeruginosa and B. amyloliquefaciens separately inhibit the fungal pathogen P.
aphanidermatum [191]. Another study on the biocontrol of F. graminearum which
attacks wheat, in which it was concluded that the use of B. subtilis and Pseudomonas
fluorescens increased the growth parameters of wheat and suppress the growth of F.
graminearum, also P. fluorescenswas the most efficient than B. subtilis or in mixture
[192].

In a recent study conducted by the authors, the biocontrol activity of a mixture
of arbuscular mycorrhizal fungi was investigated against Rhizoctonia root rot of
common bean, caused by Rhizoctonia solani Kühn, under natural conditions. The
obtained results exhibited a considerable reduction in the disease severity and inci-
dence by the mycorrhizal colonization. In addition, a significant enhancement of the
shoot and root lengths anddryweights, and the leaf areawas observed in the colonized
plantswhen comparedwith the control plants.Moreover, themineral nutrient concen-
trations and yield parameters were also improved. Transmission electronmicroscope
observations showed somedefense-related ultrastructural changes including cellwall
thickening and cytoplasmic granulation. The biochemical analysis of the colonized
plants showed an accumulation of the phenolic compounds, which have a fungitoxic
activity, and induction of the defense-related enzymes phenylalanine ammonia lyase,
peroxidase and polyphenoloxidase [176]. Furthermore, the molecular examination
indicated an induction of the transcriptional expression level of the defense-related
genes chitinase and β-1,3-glucanase as a response to the mycorrhizal colonization
[177].

5 Conclusion and Future Prospects

In this chapter, the authors tried to highlight the most important biological control
practices all over the world and focused on Egypt as a home country, it is found
that through the past century, the attention to biological control of economic crops
has increased from both the government and the researchers starting from the ordi-
nary application of biocontrol agents in contact directly to the soil and in form of
gelatin capsules to insertion of the resistance genes in the plant and produce what we
know today GM plants (genetically modified plants). In Egypt, the biological control
of different diseases becomes common due to the awareness of farmers about the
benefits of biocontrol applications.
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