Publications

Export 1 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H [I] J K L M N O P Q R S T U V W X Y Z   [Show ALL]
I
Ibrahim, E. S., M. O. N. A. T. KASHEF, T. M. Essam, and M. A. Ramadan, "A Degradome-Based Polymerase Chain Reaction to Resolve the Potential of Environmental Samples for 2,4-Dichlorophenol Biodegradation.", Current microbiology, vol. 74, issue 12, pp. 1365-1372, 2017 Dec. Abstract

A clean way to overcome environmental pollution is biodegradation. In this perspective, at the intersection of biodegradation and metagenomics, the degradome is defined as the totality of genes related to the biodegradation of a certain compound. It includes the genetic elements from both culturable and uncultured microorganisms. The possibility of assessing the biodegradation potential of an environmental samples, using a degradome-based polymerase chain reaction, was explored. 2,4-Dichlorophenol (2,4-DCP) was chosen as a model and the use of tfdB gene as a biodegradation marker was confirmed by bioinformatics study of TfdB protein. Five primer pairs were designed for the detection of different tfdB gene families. A total of 16 environmental samples were collected from Egyptian agricultural soils and wastewaters and tested for the presence of 2,4-DCP. The biodegradation capacity of 2,4-DCP was determined, for all isolated consortia, to reach up to 350 mg/l. Metagenomic DNA was extracted directly from the soil samples while successive 2,4-DCP-degrading microbial communities were enriched, with increasing concentrations of 2,4-DCP, then their DNA was extracted. The extracted DNA was tested for the distribution of the tfdB gene using a degradome-based polymerase chain reaction. tfdB-1 and tfdB-2 were detected in 5 and 9 samples, respectively. However, the co-existence of both genes was detected only in five samples. All tfdB positive samples were capable of 2,4-DCP degradation. The developed approach of assessing the potential of different environments for degrading 2,4-DCP was successfully measured in terms of accuracy (81.25%) and specificity (100%).