Export 16 results:
Sort by: Author Title Type [ Year  (Desc)]
Mai Abuowarda, M., H. O. AbuBakr, E. Ismael, M. Shaalan, M. A. Mohamed, and S. H. Aljuaydi, "Epidemiological and genetic characteristics of asymptomatic canine leishmaniasis and implications for human Leishmania infections in Egypt.", Zoonoses and public health, vol. 68, issue 5, pp. 413-430, 2021. Abstract

Leishmaniasis is a neglected zoonotic disease that poses significant veterinary and public health risks in developing countries. Dogs act as a reservoir host for leishmaniasis transmitted to humans. A total of 108 human cases of cutaneous leishmaniasis (CL) were identified in the Al-Houd Al-Marsoud Hospital in Cairo, Egypt, during 2018. Blood samples and skin biopsies were collected for further examination. Blood samples from 96 asymptomatic dogs were collected. All samples were subjected to molecular and phylogenetic analysis. Quantitative RT-PCR was used to measure the expression of genes related to mTOR signalling and inflammation in blood and tissue samples. The distribution pattern of human cases pointed to an endemic focus in North Sinai (66.67%). The prevalence of asymptomatic canine leishmaniasis was 66.60%. Histopathological examination of human skin lesions revealed a severe granulomatous inflammatory reaction, necrosis and ulceration. Moreover, leishmanial amastigotes could be detected in human tissue samples. Phylogenetic analysis revealed 100% identity of human isolates to Leishmania tropica (MN453682), and dog isolates to Leishmania infantum (MN453673), with 94.9% similarity between the two isolates. Gene expression related to mTOR signalling and inflammation in both species' samples confirmed a significant alteration of EIF4EBP1, CCR4 and INF-γ expression compared with control groups. In Egypt, increased incidence of asymptomatic carrier dogs acting as a significant reservoir host for Leishmania poses a public health hazard. Findings warrant further epidemiological investigation of CL in Egypt, as well as additional study of parasite differentiation and gene regulation.

Lang, C., E. G. Mission, A. A. - H. Ahmad Fuaad, and M. Shaalan, "Nanoparticle tools to improve and advance precision practices in the Agrifoods Sector towards sustainability - A review", Journal of cleaner production, vol. 39, pp. 126063, 2021.
Shaalan, M., B. Sellyei, M. El-Matbouli, and C. Székely, "Efficacy of silver nanoparticles to control flavobacteriosis caused by Flavobacterium johnsoniae in common carp Cyprinus carpio.", Diseases of aquatic organisms, vol. 137, issue 3, pp. 175-183, 2020. Abstractd137p175.pdf

Flavobacterial infections are among the causes of fish losses in farms with the emergence of antibiotic-resistant isolates. Silver nanoparticles (AgNPs) are known for their potent antimicrobial activity against different types of bacteria. In this study, we evaluated the antibacterial properties of AgNPs (diameter: 23 nm) against Flavobacterium johnsoniae infection in common carp Cyprinus carpio. The assays included both in vitro and in vivo antibacterial tests in addition to evaluation of cell toxicity effects on the fish cell lines. The in vitro results revealed potent inhibitory effects of AgNPs on the growth of F. johnsoniae with a minimum inhibitory concentration of 34 µg ml-1. Fish cell (epithelioma papulosum cyprini and koi carp fin) viability was 95-100% after exposure to 500 ng ml-1 (and lower concentrations) of AgNPs. In the exposure experiment, mortality rates decreased from 45% in the infected non-treated group to 30 and 15% in the intraperitoneal injection and immersion-treated groups, respectively. Neither of the treated groups showed any clinical signs or histopathological lesions. The single-dose treatment with AgNPs during early infection with F. johnsoniae aided in minimizing fish losses.

Farouk, M. M., A. El-Molla, F. A. Salib, Y. A. Soliman, and M. Shaalan, "The Role of Silver Nanoparticles in a Treatment Approach for Multidrug-Resistant Species Isolates.", International journal of nanomedicine, vol. 15, pp. 6993-7011, 2020. Abstract

Purpose: The main objective of this study is to investigate the antibacterial activity of silver nanoparticles (AgNPs) against multidrug-resistant isolates recovered from diarrheic  sheep and goats.

Methods: This study used chemical reduction synthesis of AgNPs to evaluate their antimicrobial effects by estimation of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for each isolate using the microplate dilution method and tetrazolium salt reduction test to detect the viability percentage. In vivo treatment efficacy was assessed in mice by determining the viable count of Enteritidis recovered from feces and by hematologic, biochemical and histopathologic examinations to confirm that use of AgNPs has no toxic or pathologic effects and to evaluate its ability in tissue regeneration following treatment.

Results: All recovered strains were identified as MDR with a prevalence of 4% and 3.6% in sheep and goats, respectively. The results of TEM, DLS, Zeta potential, and FTIR revealed typical characteristics of the synthesized AgNPs. Silver nanoparticles showed antibacterial activity against all recovered strains with MIC of ≤0.02-0.313 μg/mL (mean average 0.085±0.126 μg/mL) and MBC of 0.078-1.250 μg/mL (average 0.508±0.315 μg/mL). In vivo efficacy of AgNPs was observed by a reduction in the number of viable . Enteritidis recovered from feces in an . Enteritidis infected mouse model, with complete shedding stopping between treatment days 4 and 6. Hematologic, serum biochemical, and histopathologic analyses proved the ability of AgNPs to suppress inflammatory reaction caused by . Enteritidis infection.

Conclusion: The study proved the effective ability of AgNPs to fight MDR spp. in vitro and in vivo without adverse effects.

Shaalan, M., M. El-Mahdy, S. Theiner, N. Dinhopl, M. El-Matbouli, and M. Saleh, "Silver nanoparticles: Their role as antibacterial agent against Aeromonas salmonicida subsp. salmonicida in rainbow trout (Oncorhynchus mykiss).", Research in veterinary science, vol. 119, pp. 196-204, 2018 Aug. Abstractas5308044513116161503565051679_content_1.pdf

The rise of bacterial resistance to antibiotics is one of the great challenges of our age. One of the strategies to limit the development of antibiotics resistance is the investigation of alternative antimicrobials. As silver nanoparticles demonstrated a potent bactericidal activity in vitro, the aim of this study was to evaluate the in vivo antibacterial activity of silver nanoparticles against Aeromonas salmonicida subsp. salmonicida. Rainbow trout (n = 120) were divided into four groups of 30 fish each. First group was challenged with A. salmonicida (Positive control), the second group was challenged with A. salmonicida and exposed to silver nanoparticles by immersion for three hours (100 μg/L), the third group was challenged with A. salmonicida and intraperitoneally injected with silver nanoparticles (17 μg/mL) and the fourth group was sham-treated and served as a negative control group. At the 7th day post challenge, histopathology of the positive control group revealed the presence of bacterial aggregates in tissues with degenerative and necrotic changes, while at the 35th day post challenge, only liver necrosis persisted. Silver nanoparticles-treated and negative control groups did not show any clinical signs, mortalities or histopathological alterations and they were tested negative for A. salmonicida. The immersion in silver nanoparticles did not result in detectable residues of silver in the muscles 35 days after treatment. These findings demonstrate the antibacterial properties of silver nanoparticles against A. salmonicida infection. Therefore, they could be used for development of antibacterial agents in aquaculture.

Shaalan, M., M. El-Mahdy, M. Saleh, and M. El-Matbouli, "Aquaculture in Egypt: Insights on the Current Trends and Future Perspectives for Sustainable Development", Reviews in Fisheries Science & Aquaculture , vol. 26, issue 1, pp. 99-110, 2018. aquacultureinegyptinsightsonthecurrenttrendsandfutureperspectivesforsustainabledevelopment.pdf
Abdelsalam, M., M. Y. Elgendy, M. Shaalan, M. Moustafa, and M. Fujino, "Rapid identification of pathogenic streptococci isolated from moribund red tilapia (Oreochromis spp.).", Acta veterinaria Hungarica, vol. 65, issue 1, pp. 50-59, 2017 03. Abstract

Accurate and rapid identification of bacterial pathogens of fish is essential for the effective treatment and speedy control of infections. Massive mortalities in market-sized red tilapia (Oreochromis spp.) were noticed in mariculture concrete ponds in northern Egypt. Histopathological examination revealed marked congestion in the central vein of the liver with the presence of bacterial aggregates inside the lumen and in the vicinity of the central vein. A total of 12 isolates of streptococci were obtained from the moribund fish. This study documented the ability of the MicroSeq 500 16S bacterial sequencing method to accurately identify Streptococcus agalactiae and S. dysgalactiae mixed infections from moribund red tilapia that were difficult to be recognised by the commercial biochemical systems. The continuously decreasing cost of the sequencing technique should encourage its application in routine diagnostic procedures.

Shaalan, M. I., M. M. El-Mahdy, S. Theiner, M. El-Matbouli, and M. Saleh, "In vitro assessment of the antimicrobial activity of silver and zinc oxide nanoparticles against fish pathogens", Acta Veterinaria Scandinavica, vol. 59, pp. 49, 1970 Aug 21, 2017.
Shaalan, M., M. Saleh, M. El-Mahdy, and M. El-Matbouli, "Recent progress in applications of nanoparticles in fish medicine: A review", Nanomedicine: Nanotechnology, Biology and Medicine , vol. 12, issue 3, pp. 701-710, 2016. Abstract

Nanotechnology has become an extensive field of research due to the unique properties of nanoparticles, which enable novel applications. Nanoparticles have found their way into many applications in the field of medicine, including diagnostics, vaccination, drug and gene delivery. In this review, we focused on the antimicrobial effects of nanoparticles, with particular emphasis on the problem of antibiotic resistant bacteria in fisheries. The use of nanoparticle-based vaccines against many viral pathogens is a developing field in fish medicine research. Nanoparticles have gained much interest as a specific and sensitive tool for diagnosis of bacterial, fungal and viral diseases in aquaculture. Nevertheless our review also highlights the many applications of nanotechnology that are still to be explored in fish medicine.

Mahdy, M. M. E., T. A. S. E. Din, H. S. Aly, F. F. Mohammed, and M. I. Shaalan, "Evaluation of hepatotoxic and genotoxic potential of silver nanoparticles in albino rats", Experimental and Toxicologic Pathology, vol. 67, issue 1, pp. 21-29, 2015.
Adl, A., I. B. Shaheed, M. I. Shaalan, A. K. Al-Mokaddem, and A. E. Hassanien, "Digital Pathological Services Capability Framework", Advanced Machine Learning Technologies and Applications: Springer International Publishing, 2014.
Shaalan, M. I., "Over view on silver nanoparticles: Applications versus toxicity", The 24th congress of Egyptian society of animal reproduction and fertility, Hurghada, Egypt, 2014.
Shaalan, M. I., F. F. Mohammed, T. A. Salah El-Din, and M. M. El-Mahdy, "Pathological and clinicopathological studies on i/p injection of silver nanoparticles in rats", 2nd international conference on animal and dairy sciences, Hyderabad, India, 2014.
Moftah, H., M. I. Shaalan, A. E. Hassanien, and G. Schaefer, Mammary Gland Tumor Detection in Cats using Ant Colony Optimisation, , 2013.
Shaalan, M. I., F. F. Mohammed, T. A. Salah Eldin, and M. M. El Mahdy, Pathological studies on the toxic effects of silver nanoparticles in rats, : Cairo University, 2013.