Airframe Design and Construction

Maximum stresses due to applied loads

Instructor: Mohamed Abdou Mahran Kasem, Ph.D.

Aerospace Engineering Department

Cairo University

Fuselage Structure

- Given fuselage structure and determine the <u>ultimate bending strength</u>.
- ➤ Given loads and determine the <u>maximum stresses</u> applied to the fuselage structure.
- Figure Given loads and determine the <u>shear</u> <u>flow distribution</u>.

Determine the stringer stresses and forces at station 0 and station 30 due to the given loads applied at station (150), $P_z = 4000 \, Ib$, $P_y = 1000 \, Ib$, $P_x = 1500 \, Ib$.

Neglect the skin effect.

Solution strategy:

Since the fuselage is unsymmetrical and under general applied loading. We will use the general bending stresses equation

$$\sigma_{\text{b}} = -(\text{K}_{\text{s}}\text{M}_{\text{Z}} - \text{K}_{\text{l}}\text{M}_{\text{y}})\,\text{y} - (\text{K}_{\text{s}}\text{M}_{\text{y}} - \text{K}_{\text{l}}\text{M}_{\text{Z}})\,\,\text{z}$$
 where

$$K_{z} = I_{yz}/(I_{y}I_{z} - I_{yz}^{2})$$
 $K_{z} = I_{z}/(I_{y}I_{z} - I_{yz}^{2})$
 $K_{z} = I_{yz}/(I_{y}I_{z} - I_{yz}^{2})$

And we need to calculate the centroid position w.r.t. Z and Y axes.

Section 0:

1	2	3	4	5	6	7	8	9
Stringer No.	Area a	Arm z'	Arm y'	az'	az' ²	ay'	ay'2	az'y'
a	. 60	10.5	-12.00	6.30	66. 20	-7, 20	86.50	- 75.50
b	. 10	18.98	- 8.48	1.90	36.00	-0.85	7. 20	- 16.10
c	. 10	22.50	0	2. 25	50.80	-0	0	0
d	. 10	18.98	8.48	1.90	36.00	0.85	7. 20	16.10
е	. 80	10.5	12.00	8.40	88.10	9.60	115.10	100.80
f	. 80	-10.5	12.00	-8.40	88.10	9.60	115.10	-100.80
g	. 20	-18.98	8.48	-3.80	72.00	1.70	14.40	- 32.30
h	. 20	-22.50	0	-4.50	101.60	0	Ó	0
i	. 20	-18.98	- 8.48	-3.80	72.00	-1.70	14.40	32.30
j	. 30	-10.50	-12.00	-3.15	33.10	-3.60	43. 25	37.80
Sum	3.40			-2.90	643.9	8.40	403.2	- 37.70

Section 0:

Location of centroid and transfer of properties to centroidal axes.

$$\bar{z} = -2.90/3.40 = -.855''$$

$$\bar{y} = 8.40/3.40 = 2.46$$

$$I_v = 643.9 - 3.40 \times 855^2 = 641.4$$

$$I_z = 403.2 - 3.40 \times 2.46^2 = 382.6$$

$$I_{zv} = -37.7 - 3.40 \times 2.46 \times -.855 = -30.55$$

	10	11		
9	z =	y =		
	$z^{\dagger} - \bar{z}$	y' - ÿ		
	11.36	-14.46		
	19.84 23.36	-10.94		
	19.84	6.02		
	11.36 - 9.65	9.54 9.54		
	-18.13	6.02		
	-21.65	- 2.46		
	-18.13 - 9.65	-10.94 -14.46		

Section 0:

$$M_y = P_z$$
 (150) + P_x (7.85)
= $4000 \times 150 + 1500 \times 7.85 = 611800 \text{ in.lb.}$

$$M_Z = P_y (150) - P_x (2.46)$$

= -1000 x 150 + 1500 x 2.46 = -146310 in.1b.

The shears at station (0) are $V_Z = P_Z = 4000$ lb. and $V_Y = P_Y = -1000$ lb.

The normal load P_n at station (0) referred to centroid of section equals $\Sigma P_X = -1500~{\rm lb}$.

Section 0:

Substituting K values in equation for σ_b :

$$\sigma_{b}$$
 = - [.00262 x -146310 - (-.0001248 x 611800)] y - [.00156 x 611800 - (-.0001248 x -146310)] z

 σ_b = 307.0 y -936.1 z (plus σ_b is tension)

$$\sigma_{\text{b}} = -(\text{K}_{\text{s}}\text{M}_{\text{Z}} - \text{K}_{\text{l}}\text{M}_{\text{y}})_{\text{y}} - (\text{K}_{\text{s}}\text{M}_{\text{y}} - \text{K}_{\text{l}}\text{M}_{\text{Z}}) \text{ z}$$

where

$$K_1 = I_{yz}/(I_yI_z - I_{yz}^2)$$

 $K_2 = I_z/(I_yI_z - I_{yz}^2)$
 $K_3 = I_y/(I_yI_z - I_{yz}^2)$

$$K_1 = -30.55/(641.4 \times 382.6 - 30.55^2) =$$

= -30.55/244670 = -.0001248

$$K_{\circ} = 382.6/244670 = .00156$$

$$K_a = 641.4/244670 = .00262$$

Section 0:

12	13	14		
	$\sigma_c = \mathbf{F}/\Sigma \mathbf{a}$	$P_s = a(\sigma_b + \sigma_c)$		
σ _b	= -1500/3.40	= (2) (12 + 13)		
-15080	-441	-9312		
-21960	-441	-2239		
-22600	-441	-2304		
-16742	-441	-1719		
- 7692	-441	-6506		
11958	-441	9216		
18798	-441	3673		
19485	-441	3809		
13610	-441	2634		
4592	-441	1246		
		-1500		

 σ_b = 307.0 y -936.1 z (plus σ_b is tension)

Section 30:

1	2	3	4	5	6	7	8	9
Stringer No.	Area a	Arm z'	Arm y'	az†	az'2	ay'	ay' 2	az'y'
a	. 50	9.80	-11.2	4.90	48.1	-5.60	62.8	-54.9
b	. 10	17.72	- 7.92	1.77	31.4	-0.79	6.3	-14.0
С	.10	21.00	0	2.10	44.1	0	0	0
d	. 10	17. 72	7.92	1.77	31.4	0.79	6.3	14.0
е	. 66	9.8	11.20	6.47	63. 2	7.40	83.0	72.5
f	. 66	- 9.8	11.20	-6.47	63.2	7.40	83.0	-72.5
g	. 20	-17.72	7.92	-3.54	62.8	1.58	12.6	-28.0
h	. 20	-21.00	0	-4. 20	88. 2	0	0	0
i	. 20	-17.72	- 7.92	-3.54	62.8	-1.58	12.6	28.0
j	. 26	- 9.8	-11. 20	-2.55	25.0	-2.92	32.6	28.6
Sum	2.98			-3. 29	520. 2	6. 28	299. 2	-26.3

Section 30:

Reference Z' and Y' axes are taken as the centerline axes.

$$\bar{z} = -3.29/2.98 = -1.10$$

$$\bar{y} = 6.28/2.98 = 2.11$$

$$I_v = 520.2 - 2.98 \times 1.10^2 = 516.6$$

$$I_z = 299.2 - 2.98 \times 2.11^2 = 286.0$$

$$I_{zy} = -26.3 - 2.98 \times 2.11 \times -1.10 = -19.4$$

10	11		
z =	у =		
z' - ž	y' - ÿ		
10.90 18.82 22.10 18.82 10.90 - 8.7	-13.31 -10.03 - 2.11 5.81 9.09 9.09		
-16.60 -19.90 -16.60 - 8.70	5.81 - 2.11 -10.02 -13.31		

Section 30:

$$K_{a} = -19.4/(516.6 \times 286 - 19.4^{\circ})$$

 $= -19.4/147620 = -.0001315$
 $K_{a} = 286/147620 = .001936$
 $K_{a} = 516.6/147620 = .0035$
 $\sigma_{b} = -[.0035 \text{ c} -116800 - (-.0001315 \text{ x} + 492150)] \text{ y} - [.001936 \text{ x} 492150 - (-.0001315 \text{ x} 116820)] \text{ z}$
 $\sigma_{b} = 344.3 \text{ y} - 937.7 \text{ z}$

Section 30:

12	13	14
<u> </u>	$\sigma_c = F/\Sigma a$	P _s =
σ _b	= -1500/2.98	$a(\sigma_b + \sigma_c)$
-14800	-503	-7651
-21090	-503	-2159
-21447	-503	-2195
15647	-503	-1615
- 7088	-503	-5011
-11282	-503	7100
-17583	-503	3416
17943	-503	3489
12135	-503	2327
3570	-503	797
		-1500

