Airframe Design and Construction

Fuselage Ultimate bending strength

Instructor: Mohamed Abdou Mahran Kasem, Ph.D.

Aerospace Engineering Department

Cairo University

Fuselage loads

- The wing is subject to large distributed loads due to air pressure.
- ➤ However, the fuselage is subjected to relatively small surface loads.
- The fuselage is subjected to large amount of concentrated loads such as the wing reactions, the landing gear loads.
- The fuselage must be designed to withstand all these loads in addition to the internal pressure.
- ➤ It is found that the best efficient shape to handle all these loads effectively is the circular cross-section.

Fuselage Structure

The fuselage structure is usually

- ➤ a single cell thin walled tube with many transverse frames or rings, and longitudinal stringers.
- rovides combined elements which can handle concentrated and distributed applied loads efficiently and safely.
- ➤ simply is a beam structure subjected to bending, torsional, and axial forces.
- has many cutouts and discontinuity.

Fuselage structure analysis

Figure Given fuselage structure and determine the <u>ultimate bending</u> <u>strength</u>.

Figure Given loads and determine the <u>maximum stresses</u> applied to the fuselage structure.

➤ Given loads and determine the *shear flow distribution*.

The figure shows a circular fuselage cross-section. The stringers are arranged symmetrically w.r.t. the fuselage center point. Three stringers are used as illustrated in the Figure. The material is aluminum 2024.

Given the stringers' stress-strain curve, determine the fuselage ultimate bending strength?

Solution strategy

- The fuselage is under bending moment which results in compression in the upper portion and tension in the lower portion.
- The location of the centroid in unknown and subsequently the location of the neutral axis.
- Due to symmetry about the z-axis, only half of the fuselage can be considered in the present calculations.
- Neglect the buckled skin effect.
- We will use the beam stress formula which is based on linear stress variation

$$\sigma_b = -\frac{M_\chi z}{I_\chi}$$

Fig. A20.4

Solution process

1. List the stringer number, stringer type, and stringer area.

Stringer		Stringer Area
no.	Type	A_{st} [in^2]
1	S 1	0.135
2	S 1	0.135
3	S2	0.18
4	S 1	0.135
5	S 3	0.08
6	S 3	0.08
7	S 3	0.08
8	S 3	0.08
9	S 3	0.08
10	S 3	0.08
11	S 3	0.08
12	S 3	0.08
13	S 3	0.08

Fig. A20.4

Solution process

2. Stringers initial position

Angle	Radius	Initial Centroid
$\theta[rad]$	R [<i>in</i>]	Z' [<i>in</i>]
1.69163	29.484	36.269
1.93329	29.484	34.568
2.17495	29.4215	31.2134
2.41661	29.484	26.5515
2.65827	29.5465	20.7309
2.89993	29.5465	14.0709
3.14159	29.5465	7
3.38325	29.5465	-0.0709
3.62491	29.5465	-6.7309
3.86658	29.5465	-12.593
4.10824	29.5465	-17.316
4.3499	29.5465	-20.626
4.59156	29.5465	-22.331

Fig. A20.4

Solution process

2. Effective width and effective area

- Assume linear stress.
- All skin areas in the tension side are effective.

$$w_{eff} = 1.9t \sqrt{\frac{E}{\sigma_{st}}}$$

effective	Total
Area	area
A_{eff} $[in^2]$	$A_{tot} [in^2]$
0.03268	0.16768
0.03348	0.16848
0.03523	0.21523
0.0382	0.1732
0.04323	0.12323
0.05247	0.13247
0.0744	0.1544
0.108	0.188
0.216	0.296
0.216	0.296
0.216	0.296
0.216	0.296
0.216	0.296
	Area $A_{eff} [in^2]$ 0.03268 0.03348 0.03523 0.0382 0.04323 0.05247 0.0744 0.108 0.216 0.216 0.216 0.216

Solution process

3. Nonlinear stress correction

- Correct the linear stress assumption based on the linear strain distribution.
- The true stresses are calculated from the given stress strain relations.

$$K_{eff} = \frac{\sigma_{true}}{\sigma_{linear}}$$

linear strain	True stress	Effective correction factor	Corrected Effective Area
$arepsilon_{linear}$	σ _{true} [psi]	K_{eff}	A_{corr}
-0.006	-36500	1	0.1677
-0.005719	-36500	1.0492	0.1768
-0.005164	-39100	1.2447	0.2679
-0.004392	-36000	1.34727	0.2333
-0.003430	-31500	1.50985	0.1861
-0.002328	-24000	1.6948	0.2245
-0.001158	-12500	1.774	0.2740
0.000012	0	1	0.1880
0.001114	10000	1.476	0.4370
0.002083	20500	1.617	0.4788
0.002865	30000	1.721	0.5096
0.003412	35000	1.686	0.4991
0.003694	38000	1.69	0.5005
			4.1432

Fig. A20.4

Solution process

4. First moment of area, centroid, and second moment of area.

$$\bar{Z} = \frac{\sum A_{corr} Z'}{\sum A_{corr}} = \frac{-3.59}{4.143} = -0.87 \ in$$

$$Z = Z' - \bar{Z}$$

$$I_{xx} = 2\sum A_{corr}Z^2 = 3405 \ in^4$$

First moment	Centroid	Second moment of
of area		area
$A_{corr}Z'$	Z	$A_{corr}Z^2$
6.08171	37.1367	231.258
6.11052	35.4357	221.966
8.36227	32.0811	275.728
6.1957	27.4192	175.433
3.85718	21.5986	86.7966
3.15922	14.9386	50.1046
1.91773	7.86768	16.9583
-0.0133	0.79674	0.11934
-2.9413	-5.8633	15.0224
-6.0296	-11.725	65.8275
-8.8238	-16.449	137.867
-10.294	-19.759	194.849
-11.177	-21.463	230.572
-3.5949		1702.5

Fig. A20.4

Solution process

5. Fuselage ultimate bending strength.

$$M_x = -\frac{\sigma_b I_x}{z} = \frac{36500 * 3405}{37.1367} = 3.335 \text{ E6 Ib.in}$$

Fig. A20.4

Comments

- Although the arm of stringer 3 is smaller than that of stringer 1, stringer 3 carries more stresses than stringer 1 and 2.
- The stress distribution is assumed to be linear, since the bending stress equation is based on linear stress analysis.
- The ultimate bending strength is a property to the structure which is independent to the applied loads.

Fig. A20.4

Comments

• The nonlinear stress effect is important

What will happen if the nonlinear stress effect was not considered?

