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Block diagrams — Closed loop systems

Multiple subsystems are represented in two ways:
as block diagrams and as signal-flow graphs.

We will concentrate on block diagram, since
block diagrams are usually used for frequency-
domain analysis and design.

We will develop techniques to reduce each
representation to a single transfer function.

Block diagram algebra will be used to reduce
block diagrams.




Block diagrams

« Asubsystem is represented as a block with an
Input, an output, and a transfer function.

 Many systems are composed of multiple
subsystems.

« When multiple subsystems are
Interconnected, a few more schematic
elements must be added to the block diagram.

* These new elements are summing junctions
and pickoff points.
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Technigques for reducing complicated systems
to one Block diagram — Cascade form

For cascaded subsystems, each
signal is derived from the

product of the Input times the
transfer function.
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Technigques for reducing complicated systems
to one Block diagram — Parallel form
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Technigques for reducing complicated systems
to one Block diagram — Feedback form

* The feedback system forms the
basis for our study of control
systems engineering.

* It represents a closed loop
system.
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Technigques for reducing complicated systems
to one Block diagram — Feedback form
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Technigques for reducing complicated systems
to one Block diagram — Moving Blocks

» The familiar forms (cascade, parallel, and feedback) are not always
apparent in a block diagram.

* In this section, we discuss basic block moves that can be made In
order to establish familiar forms when they almost exist.

It will explain how to move blocks left and right past summing
junctions and pickoff points.



Technigques for reducing complicated systems
to one Block diagram — Moving Blocks

Equivalent block diagrams formed
when transfer functions are moved
left or right past a summing

junction.
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Technigques for reducing complicated systems
to one Block diagram — Moving Blocks

Equivalent block diagrams formed
when transfer functions are moved
left or right past a pickoff point.
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Technigques for reducing complicated systems
to one Block diagram — Example

Reduce the block diagram shown in the shown Figure to a single transfer
function.
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Technigques for reducing complicated systems
to one Block diagram — Example

Solution:
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Technigques for reducing complicated systems
to one Block diagram — Example

Solution:

Step 2: recognize that the three feedback
functions, H1(s), H2(s), and H3(s),are
connected in parallel.

They are fed from a common signal source,
and their outputs are summed.

Step 3:Also recognize that G2(s) and G3(s)
are connected In cascade.
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Technigques for reducing complicated systems
to one Block diagram — Example
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Technigques for reducing complicated systems
to one Block diagram — Example

Reduce the system shown In Figure to a single transfer function
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Technigques for reducing complicated systems
to one Block diagram — Example

Solution:
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Technigques for reducing complicated systems

to one Block diagram — Example

Solution:

Step 2: reduce the parallel pair
consisting of 1/G2(s) and
unity, and push G1(s) to the
right past the summing
junction, creating parallel
subsystems in the feedback.
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Technigques for reducing complicated systems

to one Block diagram — Example

Solution:

Step 3: collapse the summing
junctions,

add the two feedback elements
together, and combine the last
two cascaded blocks.
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Technigques for reducing complicated systems
to one Block diagram — Example

Solution:

Step 4: use the feedback
formula.
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Technigques for reducing complicated systems
to one Block diagram — Example

Solution:

Step 5: Finally, multiply the
two cascaded blocks and obtain
the final result
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Feedback Control

R(s) + K C(s) _
s(s+ a)

 Consider the system shown in Figure, which can model
a control system such as the antenna azimuth position B
control system.

« Where K models the amplifier gain, that is, the ratio of

the output voltage to the input voltage.
The closed loop T.F.

» As K varies, the poles move through the three ranges of
operation of a second-order system: overdamped, T(s)
critically damped, and underdamped.
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Feedback Control

2

For K between 0 and a:, the poles of the system

are real and are located at
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Feedback Control

 As K increases, the poles move along the real axis, and
the system remains overdamped until K = T

At that gain, or amplification, both poles are real and
equal, and the system is critically damped.
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Feedback Control

2
For gains above a:, the system is underdamped, with

complex poles located at

a V4K — a?
51.2:—§:|1f 5

as K increases, the real part remains constant and the imaginary
part increases. Thus, the peak time decreases and the percent
overshoot increases, while the settling time remains constant.
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Feedback Control — Example

For the system shown in Figure, find the peak time,
percent overshoot, and settling time

Solution:

The closed-loop transfer function takes the form,
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Feedback Control — Example

For the system shown in Figure, find the peak time,
percent overshoot, and settling time

Solution:

The closed-loop transfer function takes the form,
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Feedback Control — System design Example

Design the value of gain K, for the feedback control
system of the Figure, so that the system will respond with
a 10% overshoot.

Solution:

The closed-loop transfer function takes the form,
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Feedback Control — System design Example

Design the value of gain K, for the feedback control
system of the Figure, so that the system will respond with
a 10% overshoot.

Solution:

The closed-loop transfer function takes the form,
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