System Dynamics Block diagram and feedback control

Mohamed Abdou Mahran Kasem, Ph.D.

Aerospace Engineering Department
Cairo University

Block diagrams – Closed loop systems

- Multiple subsystems are represented in two ways: as block diagrams and as signal-flow graphs.
- We will concentrate on block diagram, since block diagrams are usually used for frequencydomain analysis and design.
- We will develop techniques to reduce each representation to a single transfer function.
- Block diagram algebra will be used to reduce block diagrams.

Block diagrams

- A subsystem is represented as a block with an input, an output, and a transfer function.
- Many systems are composed of multiple subsystems.
- When multiple subsystems are interconnected, a few more schematic elements must be added to the block diagram.
- These new elements are summing junctions and pickoff points.

For cascaded subsystems, each signal is derived from the product of the input times the transfer function.

Parallel subsystems have a common input and an output formed by the algebraic sum of the outputs from all of the subsystems.

Techniques for reducing complicated systems to one Block diagram – *Feedback form*

- The feedback system forms the basis for our study of control systems engineering.
- It represents a closed loop system.

$$G_e(s) = \frac{G(s)}{1 \pm G(s)H(s)}$$

Techniques for reducing complicated systems to one Block diagram – *Feedback form*

$$C(S) = F(S) G(S) (7)$$

$$k = F(S) = R(S) + C(S)H(S)(2)$$

$$From(B) k(2)$$

$$F(S) = [R(S) + C(S)H(S)] G(S)$$

$$F(S) [1 \pm H(S) G(S)] = R(S)G(S)$$

$$Finally = G(S)$$

$$[C(S) + G(S)] = G(S)$$

$$R(S) = G(S) = \frac{G(S)}{1 \pm H(S)} G(S)$$

$$G_e(s) = \frac{G(s)}{1 \pm G(s)H(s)}$$

Techniques for reducing complicated systems to one Block diagram – *Moving Blocks*

- The familiar forms (cascade, parallel, and feedback) are not always apparent in a block diagram.
- In this section, we discuss basic block moves that can be made in order to establish familiar forms when they almost exist.
- It will explain how to move blocks left and right past summing junctions and pickoff points.

Techniques for reducing complicated systems to one Block diagram – *Moving Blocks*

Equivalent block diagrams formed when transfer functions are moved left or right <u>past a summing junction</u>.

Techniques for reducing complicated systems to one Block diagram – *Moving Blocks*

Equivalent block diagrams formed when transfer functions are moved left or right <u>past a pickoff point</u>.

Reduce the block diagram shown in the shown Figure to a single transfer function.

Solution:

Step 1:the three summing junctions can be collapsed into a single summing junction.

Solution:

Step 2: recognize that the three feedback functions, H1(s), H2(s), and H3(s), are connected in parallel.

They are fed from a common signal source, and their outputs are summed.

Step 3:Also recognize that G2(s) and G3(s) are connected in cascade.

Solution:

Thus, the equivalent transfer function is the product

Reduce the system shown in Figure to a single transfer function

Solution:

Step 1: First, move G2(s) to the left past the pickoff point to create parallel subsystems, and reduce the feedback system consisting of G3(s) and H3(s).

Solution:

Step 2: reduce the parallel pair consisting of 1/G2(s) and unity, and push G1(s) to the right past the summing junction, creating parallel subsystems in the feedback.

Solution:

Step 3: collapse the summing junctions,

add the two feedback elements together, and combine the last two cascaded blocks.

Solution:

Step 4: use the feedback formula.

$$\begin{array}{c|c} R(s) & \hline & G_1(s)G_2(s) & \hline \\ \hline 1 + G_2(s)H_2(s) + G_1(s)G_2(s)H_1(s) & \hline \\ \hline \end{array} \begin{array}{c|c} V_4(s) & \hline \\ \hline \\ \hline \end{array} \begin{array}{c|c} \hline \\ \hline \\ \hline \end{array} \begin{array}{c|c} C(s) & \hline \end{array} \begin{array}{c|c} C(s) & \hline \\ \hline \end{array} \begin{array}{c|c} C(s) & \hline \end{array} \begin{array}{c|c} C(s) &$$

Solution:

Step 5: Finally, multiply the two cascaded blocks and obtain the final result

- Consider the system shown in Figure, which can model a control system such as the antenna azimuth position control system.
- Where *K* models the amplifier gain, that is, the ratio of the output voltage to the input voltage.
- As *K* varies, the poles move through the three ranges of operation of a second-order system: overdamped, critically damped, and underdamped.

$$T(s) = \frac{K}{s^2 + as + K}$$

For K between 0 and $\frac{a^2}{4}$, the poles of the system are real and are located at

$$s_{1,2} = -\frac{a}{2} \pm \frac{\sqrt{a^2 - 4K}}{2}$$

$$T(s) = \frac{K}{s^2 + as + K}$$

- As K increases, the poles move along the real axis, and the system remains overdamped until $K = \frac{a^2}{4}$.
- At that gain, or amplification, both poles are real and equal, and the system is critically damped.

$$T(s) = \frac{K}{s^2 + as + K}$$

For gains above $\frac{a^2}{4}$, the system is underdamped, with complex poles located at

$$s_{1,2} = -\frac{a}{2} \pm j \frac{\sqrt{4K - a^2}}{2}$$

as K increases, the real part remains constant and the imaginary part increases. Thus, the peak time decreases and the percent overshoot increases, while the settling time remains constant.

$$T(s) = \frac{K}{s^2 + as + K}$$

Feedback Control – Example

For the system shown in Figure, find the peak time, percent overshoot, and settling time

Solution:

The closed-loop transfer function takes the form,

$$T(s) = \frac{25}{s^2 + 5s + 25}$$

$$\omega_n = \sqrt{25} = 5$$

$$2\zeta\omega_n=5$$

$$\zeta = 0.5$$

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Feedback Control – Example

For the system shown in Figure, find the peak time, percent overshoot, and settling time

Solution:

The closed-loop transfer function takes the form,

$$T(s) = \frac{25}{s^2 + 5s + 25}$$

$$T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}} = 0.726 \text{ second}$$

$$\%OS = e^{-\zeta\pi/\sqrt{1-\zeta^2}} \times 100 = 16.303$$

$$T_s = \frac{4}{\zeta \omega_n} = 1.6$$
 seconds

$$T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$$

$$\%OS = e^{-(\zeta \pi / \sqrt{1 - \zeta^2})} \times 100$$

$$T_s = \frac{4}{\zeta \omega_n}$$

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Feedback Control – System design Example

Design the value of gain *K*, for the feedback control system of the Figure, so that the system will respond with a 10% overshoot.

Solution:

The closed-loop transfer function takes the form,

$$2\zeta\omega_n=5$$

$$T(s) = \frac{K}{s^2 + 5s + K}$$

$$\omega_n = \sqrt{K}$$

$$\zeta = \frac{5}{2\sqrt{K}}$$

Feedback Control – System design Example

Design the value of gain *K*, for the feedback control system of the Figure, so that the system will respond with a 10% overshoot.

Solution:

The closed-loop transfer function takes the form,

$$T(s) = \frac{K}{s^2 + 5s + K}$$

A 10% overshoot implies that $\zeta = 0.591$.

$$\zeta = \frac{5}{2\sqrt{K}}$$
 \Rightarrow $K = 17.9$

