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System response

• The objective of the previous two
chapters is to determine the system
mathematical model.

• The next step is to study the system
transient and steady state responses.

• The output response of a system is the
sum of two responses: the forced
response and the natural response.



System response – Definitions  

Poles of a Transfer Function – the 
value of “s” that causes the transfer 
function to become infinite.

Zeros of a Transfer Function – the 
value of “s” that causes the transfer 
function to become zero.
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System response – Definitions  

• A pole of the input function generates the form of the
forced response.

• A pole of the transfer function generates the form of
the natural response.

• A pole on the real axis generates an exponential
response of the form ����, where −� is the pole
location on the real axis.

• Thus, the farther to the left a pole is on the negative
real axis, the faster the exponential transient response
will decay to zero.

• The zeros and poles generate the amplitudes for both
the forced and natural responses.

From the previous example, we can conclude that



System response – Definitions  



System response – First order system  

A first-order system without zeros
can be described by the transfer
function shown



System response – First order system  

The parameter “a” is the only parameter needed to
describe the first order system transient response.

Forced response
natural response



System response – First order system  

Time Constant – We call 1/a the time constant of
the response. It is the time for ����to decay to 37%
of its initial value Or the time it takes for the step
response to rise to 63% of its final value



System response – First order system  

Rise Time, �� – the time for the waveform to go 
from 0.1 to 0.9 of its final value. 

� � = 0.9 ��� � � = 0.1

It can be obtained by solving for 



System response – First order system  

Settling Time, �� – the time for the response to 
reach, and stay within, 2% of its final value. 

� � = 0.98

It can be obtained by solving for 



System response – First order system  

First-Order Transfer Functions via Testing

• Often it is not possible to obtain a system’s
transfer function analytically.

• Perhaps the system is closed, and the component
parts are not easily identifiable.

• The system’s step response can lead to the system
performance.

• With a step input, we can measure the time
constant and the steady-state value, from which
the transfer function can be calculated.



System response – First order system 
Example  

First-Order Transfer Functions via Testing 

1. We determine that it has the first-order characteristics 
when there is no overshoot and nonzero initial slope.

2. From the response, we measure the time constant, that is, 
the time for the amplitude to reach 63% of its final value. 

� �� = 0.63 ∗ 0.72 = 0.45 ⇒ �� = 0.13 ���.

Hence,  a = 1/0.13 = 7.7



System response – First order system  

First-Order Transfer Functions via Testing 

3. The forced response reaches a steady state value at
�

�
= 0.72 ⇒ � = 5.54

4. The system T.F. is

� � =
5.54

� + 7.7



System response –
Second order system  

• Compared to the simplicity of a first-order
system, a second-order system exhibits a
wide range of responses that must be
analyzed and described (shown in Figure).

• A second-order system can display
characteristics much like a first-order
system, or, depending on component values,
display damped or pure oscillations for its
transient response.



System response – Second order system 
1. Overdamped response 

• This function has a pole at the origin that comes from the unit step
input and two real poles that come from the system.

• The input pole at the origin generates the constant forced response.
• Each of the two system poles on the real axis generates an

exponential natural response whose exponential frequency is equal
to the pole location.

So, one can determine the system response and nature without solving the 
governing equation.



System response – Second order system 
2. Underdamped response 

• This function has a pole at the origin that comes from the unit
step input and two complex poles that come from the system.



System response – Second order system 
2. Underdamped response 

• The real part of the pole matches the exponential decay frequency of
the sinusoid’s amplitude, while the imaginary part of the pole matches
the frequency of the sinusoidal oscillation.

damped sinusoidal
response for a
second order system.



System response – Second order system 
2. Underdamped response 

Steps to determine the under damped response:

1. Factoring the denominator of the transfer function in the shown
Figure.

2. The real part, -5, is the exponential frequency for the damping. It
is also the reciprocal of the time constant of the decay of the
oscillations.



System response – Second order system 
2. Underdamped response 

Steps to determine the under damped response:

3.  The imaginary part, 13.23, is the radian frequency for the 
sinusoidal oscillations. 



System response – Second order system 
3. Undamped response 

• This function has a pole at the origin that comes from the unit step
input and two imaginary poles that come from the system.

• The input pole at the origin generates the constant forced response,
and the two system poles on the imaginary axis at ∓3� generate a
sinusoidal natural response whose frequency is equal to the
location of the imaginary poles.

The response does not decay because of the absence 
of the real part. 



System response – Second order system 
4. Critically damped response 

• This function has a pole at the origin that comes from the unit
step input and two multiple real poles that come from the
system.

• The input pole at the origin generates the constant forced
response, and the two poles on the real axis at 3 generate a
natural response consisting of an exponential and an exponential
multiplied by time.

• the exponential frequency is equal to the location of the real
poles.



System response – Second order system 
All together 



System response – Second order system 

There are mainly two physical quantities have been used to 
descript the second order systems:

 Natural frequency, ��: is the frequency of oscillation of 
the system without damping. 

 Damping ration, �: 



System response – Second order system 

There are mainly two physical quantities have been used to 
descript the second order systems:

 Natural frequency, ��: is the frequency of oscillation of 
the system without damping. 

 Damping ration, �: 

System equation in terms of the 
natural frequency and damping 
coefficient. 

The system poles are 



System 
response –
Second order 
system 



Underdamped Second-Order Systems 
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Underdamped Second-Order Systems 

• The underdamped second order system is the common model 
for physical problems.

• There are other important parameters associated with the 
second order system: rise time, peak time, percent overshoot, 
and settling time. 



Underdamped Second-Order Systems 

• Notice that the definitions for settling time and rise time
are basically the same as the definitions for the first-
order response.

• Rise time, peak time, and settling time yield
information about the speed of the transient response.

• The formulas describing percent overshoot, settling
time, and peak time were derived only for a system with
two complex poles and no zeros.
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Underdamped Second-Order Systems
Example 
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Underdamped Second-Order Systems 
Example 



Systems with more than two poles  

• The formulas describing percent overshoot, settling time, and peak time were 
derived only for a system with two complex poles and no zeros.

• If a system has more than two poles or has zeros, we cannot use the formulas to 
calculate the performance specifications that we derived. 

• However, under certain conditions, a system with more than two poles or with 
zeros can be approximated as a second-order system that has just two complex 
dominant poles 



Systems with more than two poles  

Consider a system with two complex poles and one real pole.



System transformation and the eigenvalue problem  

System transformation results in similar 
systems that have different state space 
representations, but the same transfer 
function and hence the same poles and 
eigenvalues. 



System transformation – Example 

Given the system represented in state 
space, transform the system to a new 
set of state variables, z, where the new 
state variables are related to the 
original state variables, x, as follows:



System transformation – Example 

Given the system represented in state 
space, transform the system to a new 
set of state variables, z, where the new 
state variables are related to the 
original state variables, x, as follows:



Diagonalization 

• A diagonal system matrix has the advantage that each
state equation is a function of only one state variable.

• Hence, each differential equation can be solved
independently of the other equations.

• If we find the correct matrix, P, the transformed
system matrix,�����, will be a diagonal matrix.



Diagonalization 

If the eigenvectors of the matrix A are chosen as the 
basis vectors of a transformation, P, the resulting 
system matrix will be diagonal. 



Diagonalization 

If the eigenvectors of the matrix A are chosen as the 
basis vectors of a transformation, P, the resulting 
system matrix will be diagonal. 



Diagonalization – Example  

For the given system, find its the eigen-system, and 
transform it into its diagonal form.

Solution:
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