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System response

* The objective of the previous two
chapters is to determine the system
mathematical model.

* The next step is to study the system
transient and steady state responses.

* The output response of a system 1is the
sum of two responses: the forced
response and the natural response.




System response — Definitions

Poles of a Transfer Function — the
value of “s” that causes the transfer
function to become infinite.

Zeros of a Transfer Function — the
value of “s” that causes the transfer
function to become zero.
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System response — Definitions
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System response — Definitions

From the previous example, we can conclude that

* A pole of the input function generates the form of the
forced response.

* A pole of the transfer function generates the form of
the natural response.

* A pole on the real axis generates an exponential
response of the form e~%', where —a is the pole
location on the real axis.

* Thus, the farther to the left a pole 1s on the negative
real axis, the faster the exponential transient response
will decay to zero.

* The zeros and poles generate the amplitudes for both
the forced and natural responses.
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System response — Definitions

R(s) = l,r (s +3) C(s)
(s+2)(s+4)(s+5)
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System response — First order system

A first-order system without zeros
can be described by the transfer

function shown jo
A
G(s) s-plane
a R(s) a | CG)
C(s) = R(s)G(s) = — " —X a4
() = RE)G6) = -5 X

Taking the inverse transform, the step response is given by

e(t) =celt) Feslr) =1 —e®




System response — First order system

c(t) = cr(t) + c%l _ e—:r

Forced response

(14

natural response

G(s)

sta

C(s)

The parameter “a” 1s the only parameter needed to

describe the first order system transient response.
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System response — First order system

c(1)

Time Constant — We call //a the time constant of
the response. It is the time for e "%'to decay to 37%
of 1its 1nitial value Or the time 1t takes for the step
response to rise to 63% of its final value

When t = 1/a,
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System response — First order system

c(1)

Rise Time, T, — the time for the waveform to go
from 0.1 to 0.9 of its final value.

It can be obtained by solving for

c(t) =09andc(t) =0.1
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System response — First order system

c(1)

Settling Time, T’- — the time for the response to
reach, and stay within, 2% of its final value.

It can be obtained by solving for

c(t) =0.98
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System response — First order system

c(1)
1

L0 1 ;ial o fime constant _*.
First-Order Transfer Functions via Testing g: ] ///
0.7 /
e Often it is not possible to obtain a system’s 06 | 03% of final value
transfer function analytically. g'j i
* Perhaps the system is closed, and the component 03 L
parts are not easily identifiable. 0.2
* The system’s step response can lead to the system ¢ . |
performance. 0 1 2 3 ] 5
 With a step input, we can measure the time . HT,‘ - ’ | ’
constant and the steady-state value, from which T, -

the transfer function can be calculated.

c(t)=cs(t) +cu(t) =1—e™™




System response — First order system
Example

First-Order Transfer Functions via Testing

08 -

Consider a simple first-order system, G(s) = K /(s + a)

0.7

K _K/a K/a 06 1
C(S)_s(s+a)_ s (s+a)

Amplitude

1. We determine that it has the first-order characteristics
when there 1s no overshoot and nonzero 1nitial slope. 03

2. From the response, we measure the time constant, that s,
the time for the amplitude to reach 63% of its final value.

| 1 1 1 ] | ] |

0 0.1 0.2 03 04 0.5 0.6 0.7 0.8

C(TS) - 063 * 072 = 045 — TS — 013 secC. Time (seconds)

Hence, a=1/0.13="7.7



System response — First order system

First-Order Transfer Functions via Testing

e
oo
—

Consider a simple first-order system, G(s) = K /(s + a)

=
“
I

K K/a K/a

e
o
T

C(S):S(s+a): s (s+a) s 0

3. The forced response reaches a steady state value at 03 |

§= 0.72 = K =5.54 02T

4. The system T.F. 1s 0.1 F
5.54 N




System response —
Second order system

Compared to the simplicity of a first-order
system, a second-order system exhibits a
wide range of responses that must be
analyzed and described (shown in Figure).

A second-order system can display
characteristics much like a first-order
system, or, depending on component values,
display damped or pure oscillations for its
transient response.
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System response — Second order system

1. Overdamped response

* This function has a pole at the origin that comes from the unit step
input and two real poles that come from the system.

* The input pole at the origin generates the constant forced response.

* Each of the two system poles on the real axis generates an
exponential natural response whose exponential frequency is equal
to the pole location.

9 9

€)= @105 19) 5051 7.858)(s + 1.146)

So, one can determine the system response and nature without solving the
governing equation.
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System response — Second order system
2. Underdamped response .

I
(c) R(s)= 3 A 9 C(s) e
s24+25+0

Underdamped

* This function has a pole at the origin that comes from the unit .
c(f) ()= 1-e(cosV8t +'¥ sinV8¢)

step input and two complex poles that come from the system. ! =1-1.06¢~ cos/B-19.47°)
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System response — Second order system
2. Underdamped response

* The real part of the pole matches the exponential decay frequency of
the sinusoid’s amplitude, while the imaginary part of the pole matches

the frequency of the sinusoidal oscillation.

damped sinusoidal
response  for a
second order system.

c(r)
A

Exponential decay generated by
real part of complex pole pair

Sinusoidal oscillation generated by
imaginary part of complex pole pair
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=
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System response — Second order system
2. Underdamped response

Steps to determine the under damped response: NPT
Underdamped

1. Factoring the denominator of the transfer function in the shown ~
c(f) ()= 1-e(cosV8t +'¥ sinV8¢)

Figure. s = —5+13.23 Lk =1-1.06¢~ cost/8t-19.47°)

1.2
1
2. The real part, -5, is the exponential frequency for the damping. It g:g
is also the reciprocal of the time constant of the decay of the 0.4
oscillations. i
_1 c 0

R(s)—;h 500 () _ i
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System response — Second order system
2. Underdamped response .

|
G g, 9 )
24+ 25+9

Underdamped

Steps to determine the under damped response:

3. The imaginary part, 13.23, is the radian frequency for the

. . . . (1) c(hh=1-¢" :J§r+‘r£:' V81
sinusoidal oscillations. ) c(r) = 1-e"(cos = sinV8¢)

1 ab =1-1.06¢ cos/8—19.47°)

c(t) = Ky + e (K, cos 13.23t + K5sin 13.231) = K| + Kye™'(cos 13.231 — ¢).

b — tan~'K;3 /K>, Ky — \/1@ + K




System response — Second order system

3. Undamped response

((s)

* This function has a pole at the origin that comes from the unit step s+9
input and two imaginary poles that come from the system. Undammped
c(1)
. .. A c(=1-cos3r
* The input pole at the origin generates the constant forced response, <
and the two system poles on the imaginary axis at +3j generate a
sinusoidal natural response whose frequency i1s equal to the 1L
location of the imaginary poles.
c(t) = K1+ K4 cos(3t — ¢) a 1 2.5 4 5
The response does not decay because of the absence o0 _ 1 1 g
— L s-plane _
of the real part. %JB
9 -0
C(s) =
(5) s(s> +9) 4( 3




System response — Second order system
4. Critically damped response

|
R(s)= = | Q C(%) -
2+ 65+9

* This function has a pole at the origin that comes from the unit

step input and two multiple real poles that come from the iy S

system. (1)
 The input pole at the origin generates the constant forced 11 o) =1-3te> -
response, and the two poles on the real axis at 3 generate a g
natural response consisting of an exponential and an exponential 0.4
multiplied by time. % WA
* the exponential frequency is equal to the location of the real ! boE
poles. o
C (S) _ 9 _ 9 s-plane 4
S(s?+65s+9) (s +3)?
x - 0

c(t) = K1 + Kye™" + Kzte ™"



System response — Second order system
All together

Overdamped responses

c(t) = Kie " + Kye 7 jo
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System response — Second order system

There are mainly two physical quantities have been used to
descript the second order systems:

» Natural frequency, w,,: is the frequency of oscillation of
the system without damping.

» Damping ration, ¢:

Exponential decay frequency 1 Natural period (seconds)

~ Natural frequency (rad/second) 27 Exponential time constant

c(r)

20
1.8
1.6
1.4
1.2
1.0
0.8
0.6
04
02

Undamped

Under-
damped

Critically
damped

Overdamped

————




System response — Second order system

There are mainly two physical quantities have been used to
descript the second order systems:

» Natural frequency, w,,: is the frequency of oscillation of
the system without damping.

» Damping ration, ¢:

System equation in terms of the

natural frequency and damping w?

: G(s) =
coefficient. 52 + 28wys + w7
The system poles are S1,2 = —fwn T w,/F — 1
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Underdamped Second-Order Systems

C( ) — wﬁ — K] 4 KZS +K3 1 (S+ Cmn) +—LM,, 1 — Cz
Yo (8% + 2¢wys + w?) s 24 2Cw,s + w? C(s) =—-—
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Underdamped Second-Order Systems
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Underdamped Second-Order Systems

The underdamped second order system is the common model
for physical problems.

There are other important parameters associated with the
second order system: rise time, peak time, percent overshoot,
and settling time.

Rise time, T,. The time required for the waveform to go from 0.1 of the final value
to 0.9 of the final value.

. Peak time, Tp. The time required to reach the first, or maximum, peak.

Percent overshoot, % OS. The amount that the waveform overshoots the steady-
state, or final, value at the peak time, expressed as a percentage of the steady-state
value.

. Settling time, T,. The time required for the transient’s damped oscillations to

reach and stay within £2% of the steady-state value.

Cmax -
1 .UQLTHMI
Cﬁllﬂl o ‘;"’ \\ e
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0.1¢fingg ——
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Underdamped Second-Order Systems

* Notice that the definitions for settling time and rise time
are basically the same as the definitions for the first-

Cl'f'l{.l){ -

].{}?_L"ma
order response. N, S ,
1ma 7
0.98¢fipa) #
* Rise time, peak time, and settling time yield |
-#Cfinal

information about the speed of the transient response.

* The formulas describing percent overshoot, settling
time, and peak time were derived only for a system with

0.1¢fingg ——

two complex poles and no Zeros.

- T, = T,




Underdamped Second-Order Systems

Tp = il c(r)
wp\/1 = ¢ k
‘ 1.02¢g0a1 \—’:
% 0S = e 7/V1-2) % 100 w i - .
80 |- 0.98¢fipal /_>
_In(%0S/100) N

/72 + In2(%0S/100)
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Rise time X Natural frequency

Underdamped Second-Order Systems

—
-

Damping
ratio
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Normalized
rise time

1.104
1.203
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1.463
1.638
1.854
2.126
2.467
2.883
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Underdamped Second-Order Systems
Example

100

G) = F 155 7 100

find T7),, %08, T, and T,.

SOLUTION: ), and ( are calculated as 10 and 0.75, respectively. Now substitute
{ and w, into Eqgs. (4.34), (4.38), and (4.42) and find, respectively, that
I'y =0.475 second, %08 =2.838, and 7T, =0.533 second. Using the table
in Figure 4.16, the normalized rise time 1s approximately 2.3 seconds. Dividing by w,,
yields 7', = 0.23 second. This problem demonstrates that we can find 7, % OS, T,
and 7', without the tedious task of taking an inverse Laplace transform, plotting the
output response, and taking measurements from the plot.



Underdamped Second-Order Systems
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Underdamped Second-Order Systems

cl(r)

%
Envelope the same i 5 JO
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Underdamped Second-Order Systems

c(t)

1

Frequency the same

2

s-plane

Pole
motion



Underdamped Second-Order Systems

c(1)

Same overshoot

)"/ _ 3 jo
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1 s-plane
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Underdamped Second-Order Systems

Examnle
jo T :
A Finding T,,, %0S, and T, from Pole Location
X 7=j
A PROBLEM: Given the pole plot shown in Figure 4.20, find ¢, w,, T,
%08, and T.
-pl
TP SOLUTION: The damping ratio is given by ¢ = cos # = cos[arctan
(7/3)] = 0.394. The natural frequency, w,, is the radial distance
from the origin to the pole, or w, = V7% + 3% = 7.616. The peak
6 time is
- T T
Y -y i o Pyl ia 0.449 second (4.46)
The percent overshoot i1s
%0S = e~ V1) % 100 = 26% (4.47)
The approximate settling time 1s
—j1 =—jo,
X r 7, =2 _ 2 _13335econds (4.48)
FIGURE 4.20 Pole plot for Example 4.6 o4 3




Underdamped Second-Order Systems
Example

PROBLEM: Given the system shown in Figure 4.21, find J and D to yield 20%
overshoot and a settling time of 2 seconds for a step input of torque 7(1).

(1) 6(r) .

: Ae '
T




Underdamped Second-Order Systems
Example

SOLUTION: First, the transfer function for the system is

1/J
G(s) = (4.49)
E YWY
J J
From the transfer function,
K
n — gy 4.50
o= (450
and
D
2 1] —_ — 4.51
con == (4:51)
But, from the problem statement,
T =t (4.52)
Cmﬂ

or {w, = 2. Hence,

D
Aoy =4=— (4.53)



Underdamped Second-Order Systems
Example

Also, from Egs. (4.50) and (4.52),

B J

From Eq. (4.39), a 20% overshoot implies ¢ = 0.456. Therefore, from Eq. (4.54),

J
= 2\/% = 0.456 (4.55)
Hence,
J
— =0.052 4.56
% (4.56)

From the problem statement, K = 5 N-m/rad. Combining this value with Egs.
(4.53) and (4.56), D =1.04 N-m-s/rad, and J = 0.26 kg-m°.



Systems with more than two poles

* The formulas describing percent overshoot, settling time, and peak time were
derived only for a system with two complex poles and no zeros.

* [If a system has more than two poles or has zeros, we cannot use the formulas to
calculate the performance specifications that we derived.

* However, under certain conditions, a system with more than two poles or with
zeros can be approximated as a second-order system that has just two complex
dominant poles



Systems with more than two poles

Consider a system with two complex poles and one real pole.

B(s + ¢wy,) +C&Jd+ D

A
C(s)=—+ 5 >

c(t) = Au(t) + e=*"'(B cos wat + C sin wgt) + De™*"



System transformation and the eigenvalue problem

System transformation results in similar
systems that have different state space
representations, but the same transfer
function and hence the same poles and
eigenvalues.

X = Ax + Bu

y = Cx+ Du

P=[U,U,|= !Pu P12]

z=P 'APz + P 'Bu

y = CPz + Du

Px1 P»
X — [Pu P12] [Zl} — Pz
Pn1 P»n|| 22
z =P x

P 1s a transformation matrix



System transformation —

Given the system represented in state
space, transform the system to a new
set of state variables, z, where the new
state variables are related to the
original state variables, x, as follows:

21 = 2x1
22 = 3x1 + 2x
Z3 = X1 +4x3 + Sx3

Example
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System transformation — Example

Given the system represented in state
space, transform the system to a new
set of state variables, z, where the new
state variables are related to the
original state variables, x, as follows:

21 = 2x1
22 = 3x1 + 2x
23 = X1 +4x2 4 5x3

Therefore, the transformed system 1is

15 1
~125 0.7
—2.55 04

05 0 0]z

0.4
—6.2

B

0

}u



Diagonalization

A diagonal system matrix has the advantage that each
state equation is a function of only one state variable.

Hence, each differential equation can be solved
independently of the other equations.

If we find the correct matrix, P, the transformed
system matrix,P "1 AP, will be a diagonal matrix.

AP =PD

D =P AP



Diagonalization

If the eigenvectors of the matrix A are chosen as the
basis vectors of a transformation, P, the resulting
system matrix will be diagonal.

Eigenvector. The eigenvectors of the matrix A are all vectors, x; # 0, which under the
transformation A become multiples of themselves; that is,

AXi = }'-ixi

where A;’s are constants. " N x




Diagonalization

If the eigenvectors of the matrix A are chosen as the
basis vectors of a transformation, P, the resulting
system matrix will be diagonal.

Eigenvalue. The eigenvalues of the matrix A are the values of A; that satisty
Eq. (5.80) for x; # 0.
To find the eigenvectors, we rearrange Eq. (5.80). Eigenvectors, x;, satisfy

0= (01— A)x; (5.81)

det(LI—A) =0




Diagonalization — Example

For the given system, find its the eigen-system, and
transform 1t into its diagonal form.

Solution:
det(Al — A) = [g E] _ [_‘;’ _é”
a+3 -1
N -1 1+3

(-3 1
1 -3

y=1[2 3]x

=+

1
2



Diagonalization — Example

For the given system, find its the eigen-system, and
transform 1t into its diagonal form.

Solution:

det(Al — A) =

from which the eigenvalues are A = —2, and —4.

;-4

—1 A+3
A2+ 61 + 8

(-3 1
1 -3

y=1[2 3]x

=+

1
2



Diagonalization — Example

For the given system, find its the eigen-system, and
transform 1t into its diagonal form.

Solution:

(-3 1
1 -3

2 3x

=+

1
2



Diagonalization — Example

For the given system, find its the eigen-system, and
transform 1t into its diagonal form.

Solution:

from which x; = x». Thus,

-

Using the other eigenvalue, —4, we have

= [




Diagonalization — Example

For the given system, find its the eigen-system, and
transform 1t into its diagonal form.

Solution:

:
12 1/2]

12 -1/2]|
12 1/2]]
1/2 -1/2 ||
2 3][} .




Diagonalization — Example

For the given system, find its the eigen-system, and
transform 1t into its diagonal form.

Solution:

|70 a2
y=[5 -1z
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