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Modeling 1n time domain

Two approaches are available for the analysis and design of feedback control
systems:

* The first 1s known as the classical, or frequency-domain, technique.

» This approach is based on converting a system’s differential equation to a transfer function, thus
generating a mathematical model of the system that algebraically relates a representation of the output to
a representation of the input.

» Replacing a differential equation with an algebraic equation not only simplifies the representation of
individual subsystems but also simplifies modeling interconnected subsystems.

* The primary disadvantage of the classical approach 1s its limited applicability: It
can be applied only to linear, time-invariant systems or systems that can be
approximated as such.



Modeling 1n time
domain

The state space approach or time domain
approach:

* Can be used to model a wide range of
systems such as nonlinear systems, and
systems with nonzero 1nitial conditions,
in addition to the systems that can be
modeled using the classical approach.




State space representation

The loop equation takes the form

v(r) _) L
. i(1) :
The output equation takes the form ;

vr(t) = Ri(t)

(i +)

Both the state equation and the output equation are called state space
representation.




State space representation

Rules

 The minimum number of state variables required to describe a
system equals the order of the differential equation (mathematical
model).

 The minimal state variables must be linearly independent, 1.e. one
cannot be written as a linear combination from others.

for instance, in the previous example, one cannot define both the
voltage and current as state variables set because they are linearly
dependent.



State space representation

For the given electric system

The loop equation takes the form, R L

——AM— T

L— +Rz+—/1dr—v
_ ) ) v(r) (i) T~ C
Converting to charge, using i(¢) = dq/dt, we get i)
d’q _dq 1 —
L— R— —q = v(t

Which represents a second order D.E. that can be transformed into two first order

D.E’s with two state variables
dqg .
—_ =
dt
di 1 R 1

TR ¥k R S A



State space representation

From these two state variable, one can solve for other
network variables, R 5

This equation is known as the output equation; we say that v; (t)is a linear combination
of the state variables, g(z) and i(?), and the input, v(?).




State space representation

If the system 1s linear, the state and output equations can be
written 1n matrix form

vir)

X = Ax+ Bu
where
_ (dq/dt 0 1
X= | ;A=
| di/dt —1/LC —R/L
i 0
X = q ; B = ;u=v(t)
1 1/L
y=Cx+ Du
where



State space representation

A state space representation consists of:

1. A system of first order differential equation in the state variables (state
equation).

2. the algebraic output equation from which all other system variables can be
found.

A state-space representation 1s not unique, since a different choice of
state variables leads to a different representation of the same system.



State space representation

Definitions:

Linear combination: A linear combination of n variables, x;, fori = 1:n, 1s
given by the following sum, S:

S = Knxn + Ku—lxn—l +---+ lel

where each K; i1s a constant.

Linear independence: A set of variables 1s said to be linearly independent 1f
none of the variables can be written as a linear combination of the others.

System variable: Any variable that responds to an input or initial conditions in
a system.

State variables: The smallest set of linearly independent system variables



State space representation

Definitions:

State vector: A vector whose elements are the state variables.

State _space. The n-dimensional space whose axes are the state
variables.

State equations. A set of n simultaneous, first-order differential equations with
n variables, where the n variables to be solved are the state variables.

Output equation. The algebraic equation that expresses the output variables of
a system as linear combinations of the state variables and the inputs.




State space representation

Definitions:
* So a system
X = AX + Bu
y = Cx + Du

can

be

represented 1n state  space @ as,

for t > tp and initial conditions, x(z;), where

— state vector

derivative of the state vector with respect to time

output vector

mput or control vector
system matrix

mput matrix

AR P = e
|

= output matrix
D = feedforward matrix



State space representation

Definitions:

* The state vector must be selected such that,

1. A minimum number of state variables must be selected as components of the state
vector. This minimum number of state variables is sufficient to describe com-
pletely the state of the system.

2. The components of the state vector (that is, this minimum number of state
variables) must be linearly independent.



State space representation — Example 1

Given the electrical network shown 1n Figure, find a state-space representation 1f

the output 1s the current through the resistor.

Step 1. Label all of the branch currents in the network.

Node 1

- EL[fT

l K

J'I Jr,,.:r{ I)

ff{f]

Ay

L
These include i}, ip, andi,. /‘O‘O‘O‘O‘\
Step 2 Select the state variables by writing the derivative
equation for all energy storage elements, that is, the v(1) CD
inductor and the capacitor. Thus,
d Ve
C—=1
dt ¢
diy
L—=v
dt -

The state variables can be defined as the differentiated quantities i;, andv,.



State space representation — Example 1

Step 3 Express the other system variables (i, andv; ) in

terms of the state space variables (i;, andv,).
v(1) C“)

L

Node 1

——

= EL{f}

l K

jff{f}

f({f]

M|

Apply network theory, such as Kirchhoff’s voltage and current laws, to
obtain i~ and v; in terms of the state variables, v and i;. At Node 1,

ic = —Ig +1if
1 +1
_ — =\ l
R
Around the outer loop,

ve = —ve + (1)



State space representation — Example 1

Step 4 Define the state equation

ifVC
dr
di;,
:E;-__

1 1

RC C

—lv '+lv(f
L "L

Step 5 Define the output equation

Node 1




State space representation — Example 1

All in matrix form

Node 1

~1/(RC) 1/C
~1/L 0

0
1/L

be
i

Ve
_ +
L

v(t) = ir(1)
V(1) (i) l R l

e — ve !IH“}
ir =[1/R O]

I,



State space representation — Example 2

Find the state equations for the translational mechanical system shown in Figure.

Frictionless



State space representation — Example 2

First, write the system equation of motions, EEE Vo

dz}C] dxl

MlF—FDE—l—KXl —K.l'g m—
d’x
—Kx +M2T;+Kx2 = £(1)

Now let d“x; /df* = dv,/dt, and d°x,/dt* = dv,/dt, and then select x1, v1, x>, and
v, as state variables.



State space representation — Example 2

Then, the state equations will take the :I—MW M o

form

ar e
dvi K D K

dxz = +v

dt ?

dv K K 1

—= =X —— v +—f(1)



State space representation — Example 2

In vector-matrix form,

X1 | 0 1 0 0] [x1] 0

1}1 —K/Ml —D/M] K/M] 0 V1 0

| = + (1)
X2 0 0 0 1 X2 0
_1}2_ i K/Mz 0 —K/Mg 0 1 LV2 ] _l/Mg_




Converting from state space
to transfer function



Converting from State Space to a
Transfer Function

* Given the state space representation

X = Ax + Bu
y = Cx+ Du

* Take the Laplace transform assuming zero initial conditions:

sX(s) = AX(s) + BU(s)
Y(s) = CX(s) + DU(s)

* Solving for X(s) (5T~ A)X(s) = BU(s)

or
X(s) = (s — A)"'BU(s)

where I 1s the 1dentity matrix.



Converting from State Space to a
Transfer Function

* By substituting in the output equation

Y(s) = C(sI — A)"'BU(s) + DU(s) = [C(sI — A)"'B + D]U(s)
We call the matrix [C(sT — A)™'B + D] the transfer function matrix

Then,




Converting from State Space to a
Transfer Function — Example

PROBLEM: Given the system defined by Eq. (3.74), find the transfer function,
T'(s) =Y(s)/U(s), where U(s) is the input and Y(s) is the output.

"0 1 071 T[107
x=| 0 0 1|x+]|0|u (3.74a)
= =B =8| [B]

y=[1 0 0]x (3.74b)



Converting from State Space to a

Transfer Function — Example

s 0 07
(SI—A)= 10 s 0 —
0 0 s
Now form (sT — A)™":
_adj(sT—-A)

-0 1 07
0 O 1
-1 -2 -3

(5% 4+ 35 +2)

—1

—§

s —1 0 7
0O s -1
1 2 s43_
s+3 1]
s(s+3) s
—(2s+1) s%_

1
BI=A) = eI = A)

3+ 352+ 25 + 1



Converting from State Space to a
Transfer Function — Example

Substituting (sI — A)_l, B, C, and D into Eq. (3.73), where

10
B —

T(s):ggi;:C(sI—A)_lB-l—D 0
C=[1 0 0]
D=0

we obtain the final result for the transfer function:

10(s* +3s + 2)
I(s) =3 ( 2
5° 4+ 3sc+ 25+ 1




Converting from State Space to a
Transfer Function — Example

EXAMPLE 2-2

Consider the mechanical system shown in Figure 2-15. We assume that the system is linear. The

external force u(t) is the input to the system, and the displacement y(¢) of the mass is the output.

The displacement y(t) is measured from the equilibrium position in the absence of the external

force. This system 1s a single-input, single-output system.
From the diagram, the system equation is

my + by + ky = u




Converting from State Space to a

Transfer Function — Example

This system is of second order. This means that the system involves two integrators. Let us define

state variables x,(t) and x,(t) as

Then we obtain

or

The output equation is

1 1
X, = —I(—ky —by) + —u

m m
j.'] = X3
, k b ]
Xy =——X ——Xx; + —U
m m m

(2-17)

(2-18)

(2-19)




Converting from State Space to a
Transfer Function — Example

In a vector-matrix form, Equations (2-17) and (2-18) can be written as

. 0 1 ) 0
L']: kb [;]WL 1 |u (2-20)

m m m

The output equation, Equation (2-19), can be written as

y =1 (}][*:'] (2-21)

Equation (2-20) 1s a state equation and Equation (2-21) is an output equation for the system.
They are in the standard form:

Xx = Ax + Bu
vy =0Cx + Du
where

0 1 0
k b | !
m m m




Converting from State Space to a
Transfer Function — Example

By substituting A, B, C, and D into Equation (2-29), we obtain

G(s) = C(sI — A)'B + D

¢ 0 0 1 o
1 0] [0 ‘]— Kk b 1[40
‘ m m m
s -1 o
ook o1
m m m




Converting from State Space to a
Transfer Function — Example

Note that

. -1 - s
P .

— 5+ 2 5 b k

m m 5+ —5 + —

(Refer to Appendix C for the inverse of the 2 X 2 matrix.)
Thus, we have

G(s) =[1 0] 1

b k
m m

1
" ms:+ bs + k

] 0
. 1

S+ —5+—=| == 5
m
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