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Introduction

• Systems that require two or more independent coordinates (variables) 
to describe their motion are called multi-degree-of-freedom systems.
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Introduction

2 DOF System

The system # DOF = the # government differential equations = the # system natural frequencies = the 

# system modes 

Introduction

• Thus, a two-degree-of-freedom system has two normal modes of vibration corresponding to two 

natural frequencies.

• If we give an arbitrary initial excitation to the system, the resulting free vibration will be a 

superposition of the two normal modes of vibration. 

• However, if the system vibrates under the action of an external harmonic force, the resulting forced 

harmonic vibration takes place at the frequency of the applied force.

• Under harmonic excitation, resonance occurs, when the forcing frequency is equal to one of the 

natural frequencies of the system.
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Equation of Motion

Consider a viscously damped two-degree-of-freedom spring-mass system, shown in Figure.

The motion of the system is completely described by the coordinates which define the positions of 

the masses and at any time t from the respective equilibrium positions. 

Equation of Motion

The application of Newton’s second law of motion to each of the masses gives the equations of 

motion:

Should be –ve

sign here
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Equation of Motion

That represents two-coupled 2nd order nonhomogeneous differential equations 

Free-Vibration Analysis of an Undamped System

For the system shown in figure, if we neglected the damping effect. The government equation for 

free vibration will have the form, 
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Free-Vibration Analysis of an Undamped System

Assume the masses 𝑚1 𝑎𝑛𝑑 𝑚2 to have harmonic motion at the same frequency 𝜔 and same phase 

angle 𝜙, then

By substitute in the government equations,

Free-Vibration Analysis of an Undamped System

Then,

Which represents the frequency characteristics equation 
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Free-Vibration Analysis of an Undamped System

The solution of this equation yields the system natural frequencies 

Free-Vibration Analysis of an Undamped System

So, the system excitation in general will have the form, 

Where c1 and c2 can be obtained from the initial conditions. 
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Free-Vibration Analysis of an Undamped System

Free-Vibration Analysis of an Undamped System

1.5811,
1
2

& 2.4495,
−1
5

The corresponding mode shapes
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Free-Vibration Analysis of an Undamped System

From the initial conditions

Free-Vibration Analysis of an Undamped System

Thus, 

Try to plot it
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Generalized Coupling

• As stated earlier, an n-degree-of-freedom system requires n independent 

coordinates to describe its configuration. 

• Usually, these coordinates are independent geometrical quantities measured from 

the equilibrium position of the vibrating body. 

• However, it is possible to select some other set of n coordinates to describe the 

configuration of the system which is totally different than the original 

coordinates. 

• Each of these sets of n coordinates is called the generalized coordinates.

Generalized Coupling – Lathe example

• As an example, consider the lathe shown in Fig.

• The lathe bed can be replaced by an elastic beam supported on short 

elastic columns and the headstock.

• Tailstock can be replaced by two lumped masses. 

• Any of the following sets of coordinates can be used to describe the 

motion of this two-degree-of-freedom system:

1. Deflections 𝑥1(𝑡) and 𝑥2(𝑡) of the two ends of the lathe AB.

2. Deflection x(t) of the C.G. and rotation 𝜃(𝑡).
3. Deflection of the end A 𝑥1(𝑡) and rotation 𝜃(𝑡).
4. Deflection y(t) of point P located at a distance e to the left of the 

C.G. and rotation 𝜃(𝑡).
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Generalized Coupling – Lathe example

The Lathe Equation of Motion 

Equations of Motion Using x(t) and 𝜃(𝑡)

From the free-body diagram shown in Fig., with the positive values of the motion variables as indicated, the 

force equilibrium equation in the vertical direction can be written as

In matrix Form, 
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The Lathe Equation of Motion 

Forced Vibration 
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Forced Vibration

Forced Vibration
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Forced Vibration

Equations of Motion from Lagrange’s Equations

• The use of Lagrange’s equations is the standard method for setting up the equations of motion 

of multi-DOF systems.

• If the kinetic energy does not depend upon the displacements of the masses, and damping is 

ignored, then Lagrange’s equations can be written as:
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Equations of Motion from Lagrange’s Equations

Equations of Motion from Lagrange’s Equations
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Modal Coordinates

• In a multi-DOF system, it is possible to define modal coordinates instead, which define the

amplitude of a deflection shape known as a mode.

• Thus, changing a single modal coordinate can affect the displacement over all or part of a structure.

• There are two important classes of modes:

1) The first type are assumed, or arbitrary, shapes. Assumed modes are used in component mode

methods, often combined with normal modes of the components, and in the finite element method,

the ‘displacement functions’ are essentially assumed modes defined between grid points.

2) The other class of modes is that of normal modes. These have the important property of making

the system matrices diagonal, i.e. separating the freedoms so that they can be treated as a series of

single degrees of freedom, and therefore much easier to deal with than a coupled system.

Calculation of normal modes, however, requires the use of eigenvalues and eigenvectors.

Transformation from Global to Modal Coordinates

Suppose that we wish to transform the equations in global coordinates, say,
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Transformation from Global to Modal Coordinates

Transformation of the mass matrix

Transformation from Global to Modal Coordinates

Transformation of external forces
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Example

For the system shown in figure, 

a. Transform the government equations into a form having 

no stiffness coupling

b. Show how actual input forces, F1 and F2, can be applied 

to the transformed equations as generalized modal 

forces, and how generalized modal displacements can be 

converted back to actual local displacements.

Example

Part a. The equation of motion can be obtained as,
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Example

Example
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Example

Example

Part b. 
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Orthogonality of mode shapes

Let 𝛗 𝑖 be the 𝑖𝑡ℎ mode shape of free vibration of a system associated with the 𝑖𝑡ℎ natural frequency 𝜔𝑖. Let 𝛗 𝑗

be the 𝑗𝑡ℎ mode shape of free vibration of a system associated with the 𝑗𝑡ℎ natural frequency 𝜔𝑗. Then, it can be 

shown that, 𝑓𝑜𝑟 𝑖 ≠ 𝑗

𝛗 𝑖 𝒎 𝛗 𝑗 = 0 , 𝑎𝑛𝑑 𝛗 𝑖 𝐤 𝛗 𝑗 = 0

Which means that the mode shapes of free vibration are orthogonal with respect to both the mass and stiffness 

matrices. On the other hand, if 𝑖 = 𝑗

𝛗 𝑖 𝒎 𝛗 𝑖 = 𝑀𝑖 , 𝑎𝑛𝑑 𝛗 𝑖 𝐤 𝛗 𝑖 = 𝐾𝑖 = 𝑀𝑖𝜔𝑖
2

So, the mode shapes of free vibration can be used directly to decouple the system of differential equation 

“Diagonalization”.

Transformation using Eigen-Modes
Eigenvalues and eigenvectors

• Eigenvalues and eigenvectors are mathematical concepts, and their use is not confined to 

vibration theory. 

• The words incidentally are derived from the German word eigen, meaning ‘own’, so the 

eigenvalues of a set of equations are its own values, and the eigenvectors are its own vectors.

• In vibration the system eigenvalues defines the natural frequencies, and the system 

eigenvectors defines the mode shapes. 
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Transformation using Eigen-Modes
Eigenvalues and eigenvectors

Transformation using Eigen-Modes
Eigenvalues and eigenvectors
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Transformation using Eigen-Modes
Eigenvalues and eigenvectors

Transformation using Eigen-Modes
Eigenvalues and eigenvectors

43

44



3/1/2020

23

Transformation using Eigen-Modes
Eigenvalues and eigenvectors

Transformation using Eigen-Modes
Eigenvalues and eigenvectors
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Transformation using Eigen-Modes
Eigenvalues and eigenvectors

Transformation using Eigen-Modes
Eigenvalues and eigenvectors
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Transformation using Eigen-Modes
Eigenvalues and eigenvectors

Transformation using Eigen-Modes
Eigenvalues and eigenvectors

The use of the eigenvectors as modes in the transformation has made the mass and stiffness matrices diagonal.
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Transformation using Eigen-Modes
Eigenvalues and eigenvectors

The previous equation now consists of two completely independent single-DOF equations:

Transformation using Eigen-Modes
Eigenvalues and eigenvectors
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Transformation using Eigen-Modes
Eigenvalues and eigenvectors

Method – 1 

Transformation using Eigen-Modes
Eigenvalues and eigenvectors

Method – 1 
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Transformation using Eigen-Modes
Eigenvalues and eigenvectors

Method – 2 

Transformation using Eigen-Modes
Eigenvalues and eigenvectors

Method – 2 
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Transformation using Eigen-Modes
Eigenvalues and eigenvectors

Method – 2 

Eigenvalues and Eigenvectors from Flexible Matrix
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Damping in multi-DOF systems

Example 
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Solution of damped systems 

Solution of damped systems 

Sometimes the damping matrix cannot be diagonalized
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Proportional Damping

Response to Harmonic Excitation

Assume 2-Dof damped system with the equation of motion
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Response to Harmonic Excitation

By substitute in government equation

Then the solution will take the form

Where Z represents the impedance function

Response to Harmonic Excitation

Then the solution will take the form

And finally 
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Response to Harmonic Excitation

For undamped second order systems 

Response to Harmonic Excitation

For 𝐹2 = 0

67

68



3/1/2020

35

Response of multi-DOF systems by direct integration
Runge–Kutta Method

Response of multi-DOF systems by direct integration
Runge–Kutta Method for multi-degree of freedom systems
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Response of multi-DOF systems by direct integration
Runge–Kutta Method for multi-degree of freedom systems
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