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Introduction

« Systems that require two or more independent coordinates (variables)
to describe their motion are called multi-degree-of-freedom systems.
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Number of Number of masses in the system
degrees of freedom = X number of possible types
of the system of motion of each mass

“_"‘ —“‘_’1 —“

2 DOF System

2

The system # DOF = the # government differential equations = the # system natural frequencies = the
# system modes

Introduction

* Thus, a two-degree-of-freedom system has two normal modes of vibration corresponding to two
natural frequencies.

+ If we give an arbitrary initial excitation to the system, the resulting free vibration will be a
superposition of the two normal modes of vibration.

» However, if the system vibrates under the action of an external harmonic force, the resulting forced
harmonic vibration takes place at the frequency of the applied force.

» Under harmonic excitation, resonance occurs, when the forcing frequency is equal to one of the
natural frequencies of the system.
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Equation of Motion

Consider a viscously damped two-degree-of-freedom spring-mass system, shown in Figure.
The motion of the system is completely described by the coordinates which define the positions of
the masses and at any time t from the respective equilibrium positions.
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Equation of Motion

The application of Newton’s second law of motion to each of the masses gives the equations of
motion:

mpxy + (cp + )Xy — caxy + (ky + ka)xp — kaxy = fi

MaXy — caXy T (3 + ¢3) Xy — koxy + (ky + k3)xa = f

Should be —ve

—y, i — 1y, ¥y sign here
—"F] FZ

kix) —f . = 5[ Xy — X7 ) ~——f " —> k31y

: 1 2
C1 o] > C(p — i) — 10,
Spring ky under tension Spring k, under tension Spring k3 under
for +x for +(x; —x7) compression for +x;



Equation of Motion
That represents two-coupled 2™ order nonhomogeneous differential equations
=
X

(1) + [ X(1) + K (1) = (1)

[m]

Free-Vibration Analysis of an Undamped System

For the system shown in figure, if we neglected the damping effect. The government equation for

free vibration will have the form,

mX(1) + (ky + ky)xi(1) — kyxo(r) =0

maXo(1) — koxy(1) + (k2 + ka)xo(t) = 0

x1(1) x0(1)
Ky h(1) ks A gy

7
7 0000 T
T my T ) T
Z cp 1 Cy 1] 3 1]
[@) [@) [@) @] ,
I Y 7z 7 7, /




3/1/2020

Free-Vibration Analysis of an Undamped System

Assume the masses m, and m, t0 have harmonic motion at the same frequency w and same phase
angle ¢, then
xi(t) = X, cos(wt + &)

xo(t) = X> cos(wt + )

where X; and X, are constants that denote the maximum amplitudes of x;(r) and x,(1),
and ¢ is the phase angle. By substitute in the government equations,

{—mo* + (k + k) } X, — ko X,] cos(wt + @) =0

[ —k2X; + {—mng + (ky + k3)} Xo]cos(wr + @) =0

9
Free-Vibration Analysis of an Undamped System
__{—mlwz + [:‘{:l + kz}}}ﬁ - JECEXE]CGSI:{UF + (,IIIJ}I =10
[—ngl + {—mng + I:ﬁfg + k;}}x;] Cﬂil:w!’ + (,15) =10
Then, det {—m + (k + ky)} —k> —0
—ka {—mng + {kg + ka)]—
(mymy)w* = {(ky + ky)my + (ky + k3)m} @
+{(ki + ko) (k2 + ks) — K3} =0
Which represents the frequency characteristics equation
10
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Free-Vibration Analysis of an Undamped System

The solution of this equation yields the system natural frequencies

s o 1)k +kmy + (ky + k3)my X —mef + (k) + k) ky
wi—a wi = ? r] = I = = 5
2 myms x{V ky —mawi + (ky + k3)
_ 1 [{“ﬂ + ky)my + (ky + k3)m }2 XP —mes + (ki + ky) ky
F — Fy = = =
2 myms X'.t‘} ko —mgw% + (ky + k3)
4{(’“ + ko) (k2 + k3) — k%}]’"‘
mimsz 1) x () XY cos(ant + &)
(1) = F1y = F1y l : = firs
x(r) {A‘El 1) XD cos(wyt + &) first mode
—r) x40 X1? cos(wst + )
(25 = I = . - te = § d mod
x (1) {4\'52]({) rXf cos(aat + b) second mode
11

Free-Vibration Analysis of an Undamped System

So, the system excitation in general will have the form,
(1) = xI(0) + e, x (1)

Where c1 and c2 can be obtained from the initial conditions.

12



Free-Vibration Analysis of an Undamped System

Find the free-vibration response of the system shown in Fig.

with Jf\'| = 30, kz =5, k_l =0,

m =10, my=1, and ¢, =¢c; =¢3 =0 for the imtial conditions x(0) =1, x(0) =

x3(0) = 35(0) = 0.

x(1)
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,1'2( f]
hlr) ks

% - n 1 11, - 7
7 a-l ) 9} € 9] @] € 1
A A A 77

Free-Vibration Analysis of an Undamped System

13
H‘i|£|:)j t k| 0 A’j k} X[ _ 0
kj H’izm2 0 A’z 0 ll\'_1 X: 0
100 +35 -5 x|l _Jo
3 wh +35||X 0
100 — 850 + 150 =0
from which the natural frequencies can be found as
wp = 2.5, w3 = 6.0
or
w = L5811, @, = 2.4495
14

The corresponding mode shapes

(15811, {;}) & (24495,

-1
5

})
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Free-Vibration Analysis of an Undamped System

The free-vibration responses of the masses m| and m, are given by
x(1) = X{Y cos(1.5811r + ) + X|? cos(2.4495t + )

xa(1) = 2X1Y cos(1.5811¢ + o) — 5X{% cos(2.4495 + ¢by)

From the initial conditions
x(r=0)=1= XiY cos ¢y + X1 cos o,
xa(t =0) =0 = 2X{" cos ¢, — 5X1% cos &,
¥t =0) =0 = —1.5811X{" sin b — 2.4495X\% sin ¢,

it =0) = =31622x1"Y + 12.2475x1Y sin ¢,

15
Free-Vibration Analysis of an Undamped System
Thus,
5 2
x1(7) = —cos 1.5811¢ + —cos 2.4495¢
7 7
xa(t) = mcnm 1.5811¢ ﬂcns 2.4495¢
7 7
Try to plot it
16
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Generalized Coupling

» As stated earlier, an n-degree-of-freedom system requires n independent
coordinates to describe its configuration.

» Usually, these coordinates are independent geometrical quantities measured from
the equilibrium position of the vibrating body.

» However, it is possible to select some other set of n coordinates to describe the
configuration of the system which is totally different than the original
coordinates.

 Each of these sets of n coordinates is called the generalized coordinates.

17

Generalized Coupling — Lathe example

» Asan example, consider the lathe shown in Fig.
+ The lathe bed can be replaced by an elastic beam supported on short

Headstock Live center Dead center Tailstock
elastic columns and the headstock. | / \.\
+ Tailstock can be replaced by two lumped masses. LJ,/ \ |
* Any of the following sets of coordinates can be used to describe the [H[ .
motion of this two-degree-of-freedom system: / | ,
{ Bed \
L | —

1. Deflections x, (t) and x, (t) of the two ends of the lathe AB.

2. Deflection x(t) of the C.G. and rotation 6(t).

3. Deflection of the end A x, (t) and rotation 6(t).

4. Deflection y(t) of point P located at a distance e to the left of the
C.G. and rotation 6(t).

Thus any set of these coordinates—( xy, x2), (x, ), ( xy, 8), and ( y, #) —represents the gen-
eralized coordinates of the system. Now we shall derive the equations of motion of the lathe
using two different sets of coordinates to illustrate the concept of coordinate coupling.

18
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Generalized Coupling — Lathe example

=i

=

A *

CG. mJ,

19

The Lathe Equation of Motion

Equations of Motion Using x(t) and 0(t)

Headstock Live center Dead center Tailstock

R

A

/7

{ Bed \

L | —

From the free-body diagram shown in Fig., with the positive values of the motion variables as indicated, the

force equilibrium equation in the vertical direction can be written as
mX = —k(x — L#) — ka(x + 1.0)
and the moment equation about the C.G. can be expressed as

I = ky(x — L0V — ky(x + L)L

—(kilhy — kahy) x
(k7 + kal3) | |0

In matrix Form,

|:m O:| {x} |: (k1 + ko)
-+
0 4|6 —(kly — ko)

20

keaty = Kol x + 1580)

10
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The Lathe Equation of Motion

m 0 X . (k) + k2) —(kyly — kaly) X
0 5 0 —(kily — kal») (,{-I;]? 4 kzl%) P
L
o

It can be seen that each of these equations contain x and #. They become independent of
each other if the coupling term (kil; — ksly) is equal to zero—that is, if kily = kaly. If
kily # kals, the resultant motion of the lathe AB is both translational and rotational when
either a displacement or torque is applied through the C.G. of the body as an initial condi-
tion. In other words, the lathe rotates in the vertical plane and has vertical motion as well,
unless kil = kjl» This is known as elastic or static coupling.

21
Forced Vibration
The equations of motion of a general two-degree-of-freedom system under external forces
can be written as
myp omi | )X L X
myy  may || X2 oy oo | (%2
I RTIRUER ) I G
kia o ko || x2 F
& = icot | =
F{1) = Fpe, =12
where w is the forcing frequency. We can write the steady-state solutions as
— Wy T
IJ,(I} = X', j=12
22

11



Forced Vibration

(_szm“ + !Eﬂ.ll‘.‘]] + k“)
{_wzmlg + I-l'.UI'_"lz + klg}

Fap
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(_LUEH‘HE + f&}Clg + klﬁ) Xl
{_LUEH:EE + E.UJI‘_'EE + ;(22} Xg

we define the mechanical impedance Z,( iw) as

Zr.i( ir_u}

[Z(iw)]X = F,

3 .
= —w My + iwey + kg

rhs=12

e

Z)y(iw)

= Impedance matrix
Z( fw):| pe

X = [Z(iw)] ' F,
_;0 = { Fio } where the inverse of the impedance matrix is given by

23
Forced Vibration
where
ooyt | Znlio)
[2(i0)] Lnﬁw}
f)
Xy
and
24

2w = 1 fzzz(fw)
[Z(ie)] Zy(i0) Zy(iw) — 2 iw) | ~Ziofi0)

*le(fw):|
Zy(iw)

12
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Forced Vibration

Zyliw) Fig — Zpa(iw) Fy

Xiliw) = 1
) = ) Zli) = Ziie)
X,(iw) = —Z(iw) Fg + Zy(iw) Fy

a Z]](waZQEI:fw} - Z%EU"—”)

Equations of Motion from Lagrange’s Equations

* The use of Lagrange’s equations is the standard method for setting up the equations of motion
of multi-DOF systems.

 If the Kkinetic energy does not depend upon the displacements of the masses, and damping is
ignored, then Lagrange’s equations can be written as:

dagory v,
ai\aq,) Tag, ~ ¢

(i=1,2)

where T is the total kinetic energy of the system, and U the total potential energy.
The g; (g; and g- in this case) are generalized coordinates, and the O, are generalized
forces.

Certain restrictions apply to the choice of these generalized quantities:
(a) The coordinates must be independent of each other;
(b) The generalized forces, Q,, must do the same work as the actual forces, F; and F.

3/1/2020
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28

Equations of Motion from Lagrange’s Equations

These requirements are satisfied if we let g1 = z1, g2 = 2, Q1 = Fy and 0> = F>.
Writing down the kinetic energy, 7, and the potential energy, U:

) )
T =1mz +3imsz;

U=1kz +ik(z — 21)’= 12} + Lo — kozizo + ko
Then,
d [oT d /[oT . d [oT d /oT .
— == === =m — = —[=— ] =mi
dr \ dq, dr \ 9% dr \ dga dr \ 9z,
ou  oU ou  oU
—=—=kiz; ki + kaz = = kyz — koz
R 2 dqy 0z, o T

Equations of Motion from Lagrange’s Equations

Substituting these into Eq. (6.6), together with F; = 07 and F> = Q1
miZ + kizy — ko vk = F

maZs + krzy — kazy = F5

or expressed in matrix form:
ny ﬂ :1 4 (kl +k3) —kj Z] . F1
0 2 fg —,g(g ,gc’g Z3 Fg

which is, of course, the same as both Eqs (6.2) and (6.5).

3/1/2020
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Modal Coordinates

* In a multi-DOF system, it is possible to define modal coordinates instead, which define the
amplitude of a deflection shape known as a mode.

» Thus, changing a single modal coordinate can affect the displacement over all or part of a structure.

e There are two important classes of modes:

1) The first type are assumed, or arbitrary, shapes. Assumed modes are used in component mode
methods, often combined with normal modes of the components, and in the finite element method,
the “displacement functions’ are essentially assumed modes defined between grid points.

2) The other class of modes is that of normal modes. These have the important property of making
the system matrices diagonal, i.e. separating the freedoms so that they can be treated as a series of
single degrees of freedom, and therefore much easier to deal with than a coupled system.
Calculation of normal modes, however, requires the use of eigenvalues and eigenvectors.

29

Transformation from Global to Modal Coordinates

Suppose that we wish to transform the equations in global coordinates, say,

[M]{Z} + [K]{z} = {F}
into an alternate form in modal coordinates, say,
(M|{g} + [K]{q} = {0}

The first step is to define the transformation giving the relationship between the
global displacements, {z}, and the modal displacements, {g}:

(=} = ¥]{g)

from which and
R ("= @) "
{z}"={g}"[x]"

30

15



Transformation from Global to Modal Coordinates

Transformation of the mass matrix

T = 4" M)(
T =4 MIE = Ml ML) = M) aa) (] = (X" [M][X]
U~ 4K 2
From Egs (6.22), (6.26) and (6.28):
U = 41K 2} = Ha) I IKIIN ) = Had "[RO )
where the new stiffness matrix, in the modal system, is [K], given by:
1K1 = (XK

31

Transformation from Global to Modal Coordinates

Transformation of external forces
, T
W= {z} {F}

If {Q} is the set of external modal forces giving the same loading as {F}, and {q} is
the corresponding set of virtual displacements, the same work is done, and

W= {2} {F} = {q} {0}

Therefore

(0} = M"{F)

which is the required expression relating the actual external forces, {F}, to the
generalized or modal forces, {Q}.

32

3/1/2020
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Example

For the system shown in figure,

LY

Voo

a. Transform the government equations into a form having i‘];'r“
no stiffness coupling 1z
b. Show how actual input forces, F1 and F2, can be applied My =—
to the transformed equations as generalized modal
forces, and how generalized modal displacements can be F 1T % Ky
converted back to actual local displacements. 1
m |17

33
E X a m p I e ///////(//////
Part a. The equation of motion can be obtained as, - i
z
my —— 1
nny 0 _-'..1 + I:;tl + ;l.j} —kj Z] . Fl
0 2 _".'3 —}'f(j }'f(j Z7 Fj F1T %k
L Ko
ﬁ
|-
my —
These equations were formed by taking the displacements, z; and z», of the indivi-
dual masses, m; and m», as the generalized coordinates. This resulted in a coupled ET

stiffness matrix, but an uncoupled mass matrix.

34

17



Example

Let us choose to represent the motion of the system by two coordinates, g;and ¢,
where the actual displacements, z; and z», of the masses m; and m; are given by the
following transformation, corresponding to

(=1 e

The columns of the 2 x 2 matrix are simple examples of assumed modes; we have
arbitrarily decided that the first mode is {i}, i.e. the two masses move one unit
upwards together, and the second mode is {?}, i.e. m does not move at all, and m>

moves one unit upwards. From Fig. 6.3, we see that the first mode compresses &, but
not k;, and that the second mode compresses only ks, not k;. We would therefore
expect that using these modes would remove the stiffness coupling.

35
Example
[M] = [X]" [M][X]
[M]{z} + [K]{z} = {F} and
to the form of Eq. (6.25): -
) - K] = [X]"[K][X]
(M]{G} + [K]{q} = {Q}
where
1 0
=1 ]
36

3/1/2020
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Example %
ki
X (M@ + (X KIX g} = (0) s

1 0] [m 011 0](d 1 0] [k +ka) ks 1[1 0] (a1 F‘T%;@

+
1 1 0 nia 1 1 ('j'] 1 1 —kj kg 1 1 g2

 Jz
B {Q1 m; —
0
Rt
Multiplied out, these become

RS R R S,

37
Exa. m p I e //////%//////
ki
Part b. ,
{0} = [X"{F}
F
to convert them to modal external forces {Q}. In this example: T %kE
fen [t o R _[1 1]fF T fa
{(’} QE 1 1 Fj 0 1 Fg
R
@={ah=l k)
38
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Orthogonality of mode shapes

Let {¢}; be the i*" mode shape of free vibration of a system associated with the i" natural frequency w;. Let {¢};
be the jt"* mode shape of free vibration of a system associated with the j* natural frequency wj. Then, it can be

shown that, for i # j

lpl;[ml{@}; =0,and  |@];[kl{g}; =0

Which means that the mode shapes of free vibration are orthogonal with respect to both the mass and stiffness
matrices. On the other hand, if i = j

l@);[ml{@}; = M;,and  |@|;[Kl{¢@}; = K; = M;w?

So, the mode shapes of free vibration can be used directly to decouple the system of differential equation
“Diagonalization”.

39

Transformation using Eigen-Modes
Eigenvalues and eigenvectors

» Eigenvalues and eigenvectors are mathematical concepts, and their use is not confined to
vibration theory.

» The words incidentally are derived from the German word eigen, meaning ‘own’, so the
eigenvalues of a set of equations are its own values, and the eigenvectors are its own vectors.

* In vibration the system eigenvalues defines the natural frequencies, and the system
eigenvectors defines the mode shapes.

40

20



Transformation using Eigen-Modes
Eigenvalues and eigenvectors

[M{Z} + [K|{z} = {F}

Since the eigenvalues and eigenvectors are unaffected by the applied forces, they can
be obtained from the ‘homogeneous’ equations given by omitting the external forces:

[M]{z} + [K]{z} =0
or, say,

myy M2 -| Pr(H }Eﬁj -|
M2y Wi J 2 + kjl k]j J

L HI H
-

by b
i

()
|
=

41

Transformation using Eigen-Modes
Eigenvalues and eigenvectors

Since there is no damping, if the system is assumed to have been set in motion at
frequency w, all the elements of the vector {z} will vibrate in phase, or exact antiphase,
with each other. The responses at all the points zj, zp, etc. can be considered as
horizontal or vertical projections of a rotating, complex unit vector, ¢!, multiplied
by the real constants z;, Z;, etc. Then the responses of all the points, z;, z», etc., are
given by:

[¥)

Ci.;:: . {E}Ci":‘r

RTINS

F}=q2 1=

The vector of accelerations, {Z}, is given by differentiating Eq. (6.42) twice with
respect to time:

1

. baroba

[¥)
I
L T 1

[¥)

2=

Ci.;:: o _NE{E}C'[.;::

42

3/1/2020

21



Transformation using Eigen-Modes

Eigenvalues and eigenvectors

kll
+ |k

m e
2 my M

by by

Tk =

—w

(—w?[M] + [K]){z} =0
or writing A = w’

(=A[M] + [K]){z} =0

ki2

k2

3/1/2020

by by

-
|
=
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Transformation using Eigen-Modes
Eigenvalues and eigenvectors

(a) Find the eigenvalues and eigenvectors of the undamped system shown in Fig. gt
with: % Ky
my =1kg my=2kg; ki =10N/m k;=10N/m 12,

my

Scale the eigenvectors so that the largest absolute element in each column is set to
unity. F‘T %kg

(b) Demonstrate that a transformation to modal coordinates using the eigenvectors JZ
as modes enables the equations to be written as uncoupled single-DOF systems. my |17

(¢) Rescale the eigenvectors so that the mass matrix, in normal mode coordinates, is a T
unit matrix. F

44
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Transformation using Eigen-Modes
Eigenvalues and eigenvectors

or

46

|

5 Al 2

0 m 25 5
1serting the given numerical values:

T )

0 2]\ 5

Omitting the applied forces F; and F> gives the homogeneous equations, from

which the eigenvalues and eigenvectors can be found:

e 20 -10]f=a)
{n q]{fg}+|i—lﬂ 10]{:3} 0

“

Transformation using Eigen-Modes

Eigenvalues and eigenvectors

20 -10] 1 0]\[=@) _ (20 - \)
({_m m] ”\{n ED{} 0 10
or
@-% 10 Jf=a)_,
“10 (10-23) ]\ 2 N
giving

~10
(10 — 2X)

A2 — 25X +50=0.

=0,

(20 — A)(10 — 2X) — 100 = 0,

3/1/2020
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Transformation using Eigen-Modes
Eigenvalues and eigenvectors

Solving this quadratic equation by the formula \ = Z3EvV2¥ =200 giyes the lower

eigenvalue, A\ = 2.1922, and the higher eigenvalue, A; = 22.807.
The two natural frequencies are

wy = A1 = /2.1922 = 1.480rad/s, and
wy = /A = /22807 = 4.775rad /s

2\ ([ 10 10 — 2
Z 20-x) "\ "10

47
Transformation using Eigen-Modes
Eigenvalues and eigenvectors
The eigenvectors can now be called ‘normal modes’, and it is usual to write them as
vectors:
oh={2} wn-{21
2 ) 22)»
Using the first of the standard methods for normalizing the eigenvectors (making
the largest absolute element in each column equal to unity), these are
. 0.5615 . 1
(oh = { I } (0}a= {—n.zsm}
48

3/1/2020

24



3/1/2020

Transformation using Eigen-Modes
Eigenvalues and eigenvectors

{z} = [Xl{a}

is now formed by wusing the eigenvectors of the original equations as its columns. The
transformation matrix [X], in this case, is therefore:

. . 0.5615 1
[X] = [{49}1{@}2] - { 1 _0_2307]
From Eq. (6.31), the new mass matrix [M], in modal coordinates, is given by:
(M) = [X]" [M][X]

or numerically:

vl — [ 0-5615 1 1'[1 0]Jo.5615 1 2315 0
] 1 —02807] |0 2 I —0.2807 0 1157

49

Transformation using Eigen-Modes
Eigenvalues and eigenvectors
the new stiffness matrix, [K], in modal coordinates, is given by:
K] = [X]'[K][X]
or numerically:

(K] — [ 05615 1 1'T20 -10][0.5615 1 ~[5075 0
- 1 —0.2807) |—10 10 I —0.2807 0 2640

The comnplete equations in normal mode coordinates are now given by substituting

(MI{4} + [K]{q} = {0}

giving

2315 0 (i 505 0 \fq)_ [O
0 1157\\éf T o 2640\ g 0

The use of the eigenvectors as modes in the transformation has made the mass and stiffness matrices diagonal.

50
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Transformation using Eigen-Modes
Eigenvalues and eigenvectors

0 1157 \é [T o 2640\ g 0>

The previous equation now consists of two completely independent single-DOF equations:

my gy + kyqr = Oy

and

Mygy + kg = Qs

Transformation using Eigen-Modes
Eigenvalues and eigenvectors

The other standard method for normalizing the eigenvectors is to scale them so that
the new mass matrix, [M], in modal coordinates, is equal to the unit matrix, [/].

[ 2]-[3 1]

Lo}

The eigenvectors are then described as weighted normal or orthonormal, and the
corresponding stiffness matrix, [K], then becomes

K - - S K
0 ko 0 M 0 w3
that is, a diagonal matrix of the squares of the natural frequencies. Scaling the

eigenvectors so that the mass and stiffness matrices take these simple forms can be
achieved in two ways.

3/1/2020
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Transformation using Eigen-Modes
Eigenvalues and eigenvectors

Method -1
!
Oy = o = an ry = !
m;; e ™M T e
oy {0.5615}_{0.3690}
N TR 0.6572
V2315 X = [(6},{6}a] = 0.3690 —0.9294
e I\ _ [-09294 PIil = o652 0.2609
R = e | —0.2807 0.2609
53

Transformation using Eigen-Modes
Eigenvalues and eigenvectors

Method - 1

) — (XM ] — [0.3690 _0.9294]"{1 n] [0.3690 —0.9294] N {1 n]

0.6572  0.2609 0 21106572  0.2609 0 1

so [M] becomes a unit matrix and

0.3690 _0.9294]'['[20 —10][0.3690 _0.9294]
0.6572 02609 | =10 10 |[0.6572  0.2609

B [2.192 0 ]
0 22.807

(K] = [X|T[K][Y] = [

where the diagonal terms are now seen to be equal to the squares of the natural
. 3 2
frequencies, wy and ws.

54
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Transformation using Eigen-Modes
Eigenvalues and eigenvectors

Method - 2

my = {o}; [M]{4},

where {¢} represents eigenvector 7 in any arbitrary form, for example, in the non-

standard form:

(6} = {[].51615} and {g}, {—3.1561}

55
Transformation using Eigen-Modes
Eigenvalues and eigenvectors
Method — 2
and [M] is the original mass matrix in global coordinates, in this example given as
1 0
[M] = [n 2]
Equations (P) and (U) can be combined, giving the more usual expression for a;:
i ¥
=\ T o
({g}f [M] {9} )
56
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Transformation using Eigen-Modes
Eigenvalues and eigenvectors

Method - 2

Substituting the numerical values above into Eq. (W) gives «;=0.6572 and
a@>=0.2609. The orthonormal eigenvectors are then:

| . 05615 _ [ 0.3690
{oh = aiigh _0'6572{ ! } = {0.65?2}

_ _ —3.561 —0.9294

which are seen to be the same as the eigenvectors given in Eqs (Q,) and (Q») by the
first method.

57

Eigenvalues and Eigenvectors from Flexible Matrix

(=A[M] + [K]){z} =0
where A = w?. The eigenvalues, A;, were then found as the roots of the characteristic
equation given by expanding the determinant [[K] — A[M]|. or [[M]'[K] — A[{]|, and
the eigenvectors were found by substituting the eigenvalues back into the equations of

motion.

Very often, the flexibility matrix, [K]™", is known rather than [K]. In this case, there is
no need to invert [K]™" to give [K], since the eigenvalues and vectors can be extracted
equally well from the mass and flexibility matrices, as follows. Pre-multiplying
Eq. (6.45) by [K]™" gives

~ K] [M]{z} + (K] [K]{z} =0

(1K1 (M) - A7]) {2} =0 (6.47)

where A = /A = l/u):. The eigenvalues A; are then given by the roots of the character-
istic equation:

‘[K]“[M] - A[Il‘ =0 (6.48)
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Damping in multi-DOF systems

d /o +BD+3U Fo(i=12)
(=) + =4 F (i=1.
di\oz) 0z 0z '
where in this case the dissipation energy, D, analogous to the kinetic energy 7 and the
potential energy, U, is given by:
D=laZ+1a( -4)

Whichever method is used, the equations of motion are the same as for the

undamped system, but with additional terms due to the damping:

59
Example
_ Fy kizy 1y
Fr—mi —kinn—aZi+ el —41) +kiza—21) =0 k1§ Cy T l l
1 L
Fy—mi —cy(ia—01) = ka(za—21) = 0 : 1
el U Tim
or in matrix form:
{ng r:a]g]{j;}+ |:(f17+f;2) ;zf]{j;}{(}"l:;zkl) *;;'3]{2}_ {%] kzg Q‘j% Kz(Z:zI—ZO %2(22—21]
_ z
- A o Et e _J : _—lmazz
M){z} + [z} + Kz} = {F) .
F
The damping matrix, [C], Is a square, symmetric matrix, comparable to the mass
and stiffness matrices.
60
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Solution of damped systems

There are fundamentally two ways of solving an equation such as Eq. (6.65) for
particular forms of the applied forces {F} These are
(1) Solution by the normal mode summation method.
(2) Direct solution of the global equations of motion.

Method (1), the normal mode summation method, is usually preferred, as it is
completely analytic. Unfortunately, some forms of the damping matrix, [C], can
cause problems when we try to use it, and these are discussed in the next section.

61

Solution of damped systems

Sometimes the damping matrix cannot be diagonalized

One solution to this problem would be to use the fact that any damping matrix can
be made diagonal, together with the mass and stiffness matrices, if complex eigen-
values and eigenvectors are used. This is a considerable extra complication, and is
avoided when possible, but there are some systems where this approach has to be used.
Some examples are the following:

(1) Rotating systems such as helicopter rotors, where centrifugal and Coriolis forces
can lead to damping coupling between the modes;

(2) Aircraft flutter analysis and response calculations using the p method, where large
cross-damping terms can arise from aerodynamic forces. The original flutter

solution method, now known as the k method, was, in fact, originally devised
specifically to avoid the use of complex eigenvalues and eigenvectors.
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Proportional Damping

[M{z} + [CI{z} + [KI{z} = {F}

(€] = a[M] + B[K] (M{z} + iglKI (=} + [KI {2} = {F)

63
Response to Harmonic Excitation
Assume 2-Dof damped system with the equation of motion
MX(1)+ Cx(t) + Kx(1) = F(r) F(t) = Fe'™
where in general the mass, damping and stiffness matrices are given by
myp o my2 cloCp2 ki k2
M e { . [,1 = \ E’ —
Mz Mmoo c1z €22 k12 ki
64
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Response to Harmonic Excitation

x(1) = X(iw)e'™'
By substitute in government equation
Z{iw)X(iw)=F
Where Z represents the impedance function

Zliw) = —w M+ iwC+ K

y 2 H 1 B = i
:fj{i:..-.-‘}Z—i.a) .FH,.'J'-I—!'..'.-‘E”—-;EEJ;, L= 1,2

Then the solution will take the form

X(iw)=Z iw)F

65
Response to Harmonic Excitation
Then the solution will take the form
X(iw) = Z7 ' (iw)F
where the inverse has the explicit form
Z-%iw) 1 z(iw)  —zaliw)
) =
2G| | —zip(iw)  zuliw)
1 mliw) —z12(iw)
- znliw)zliv) - Zzzztf“) —zpp(iw)  znliw)
And finally
. zoaliw) Fy — z2(iw) Fa )
Xi(iw) =; 5o Xaliw) =
E.lllzfu-?}?.'gﬂl'.d}—zlz(m_r}
66

—zp2{iw) F) -_'.-_Zl]{ff-»'”'é

zy1(iw)zaa(iw) — 2§, (iw)
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Response to Harmonic Excitation

For undamped second order systems

) .
211 (w) = kyy —w?my, 22(w) =k —wma, 212(w) = ki2

(kag —w?ma) Fy —kia Fa
(k11 — w?my) (kap — whma) — ki,

Xy(w) =

k2 Fy 4 (kyy —wPm)) >
(k1) — w?m ) (koo — w2ma) — k3,

Xalw) =

67
Response to Harmonic Excitation
R 3= 2{w/juw )
Forf =0 M) = S T ol = oy
sz]'=ﬂ :
Sk 1= G fwn )21 — (w/wn)?]
3 | | | 3 . 1 [
A |-
g, i/l s, =" [\
b 2 Sk
-3 JII JI{ | -3 :I L
0 0.5 1.0 1.5 20 25 0 05 1.0 15 20 25
/S [T
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Response of multi-DOF systems by direct integration
Runge—Kutta Method

mz4cz+kz=F

was split into two first-order equations
u=:

and, since ? = 1,

69

Response of multi-DOF systems by direct integration
Runge—Kutta Method for multi-degree of freedom systems

{u} = {2}
and, using Eq. (6.79):
{u} = {2} = [M] " ({F} - [Cl{u} - [K{z})

Equations (6.80a) and (6.80b) are usually combined, giving:
FIREIORTEIN N
{} —[M7 K] —[M]7[C] ] | {u} (M~ {F}
now become vectors of average slopes for the multi-DOF version:
£ (1) 2) (3) (4)
{{u)} —%({uj +2{u} 7 +2{w;} " + {w} )

ey

() =#({a)® + 240y +2{a}” +{w}")
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Response of multi-DOF systems by direct integration
Runge—Kutta Method for multi-degree of freedom systems

{zi1} = {z;} +%({uj}':-1:' +2{uj}':'2] +2{uj}':'3] + {uj}-:_4;|)
(11} = s} + B({) " +2(8) ™ 20} O+ {1} )

Definition of Average Slopes in Fourth-order Runge-Kutta Method

{71 ={=} {1} = {w} {w} " = 1™ ({B) - 1{u} " - (KI{=}"
e 1/ A (7 ARE R U s % A (7 et 171 KT R (o S (S
(
(

e R R U e UV RS LA U L () R Gl O R I
{:_,-}H:z {z} 4 h{a(f.}'i-“i {w} ={w} J'z{[{_,-}['\‘: {a'f_,-}H:z M) {E} [CHH_,-}H: [!&']{:_,-}':4:
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