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Beam theory

The word beam refers to an element that

- Has a section dimensions that are small relative to its length
- Designed to support transverse loads
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Beam theory

* In the present course, wing stresses are calculated based on the beam theory
which treats the wing as a cantilevered beam based on the following
assumptions:

 Transverse

bending; w
* This assum
* This assum

sections of the wing that are originally plane remains plane after
nich means that strain variation is linear.
ption neglects strain due shear stresses in skin (shear-lag effect).

ption Is true except near major cut-outs and concentrated loads.

* The stress distribution is directly proportional to strain and is also linear. This

assumption

IS corrected by using the so-called effective section.



Beam theory
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Bending stress

» Plane sections remains planes after
bending, but they rotate w.r.t each other.

» After applying stresses, the top fiber are
shortened, and the bottom fibers are
elongated.

» At certain plane on the cross-section, the
fiber suffer no deformation and no
stresses, and this location 1s referred to as
the neutral axis.

/ Moment Dia. \Fig. b

Unstressed

“ section
n—{—\-n

b Stressed
Pa—

- section
-l-h:h-
Fig. ¢



|_ocation of Neutral axis

The neutral axis passes through the
centroid of the cross-sectional area
when the material follows Hooke’s
law and there Is no axial force
acting on the cross section.
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Equation of bending stresses

Assumptions:

»Straight  cantilever beam  with
constant cross-section.

»The beam subject to pure bending
such that no torsion moments applied.

It is required to determine the neutral
axis direction and the bending stress at
any point within the cross-section.
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Equation of bending stresses

Element area
Let o represent unlt bendling stress at any

point a distance y, from the neutral axis. Then
the stress o on da 1s

O=Kyy, =-—=-=-=-—=—=—==-—-=-====- (1)

Plane
where k is a constant. Since the position of of loads
the neutral axis Is unknown, yp Will De exXpress-

ed for convenience in terms of rectangular co-
ordinates with respect to the axes ¥X-X and Y-Y.

Thus, y, = (y -xtan @) cos f - - - - - -

=y coS @ -x8n@d========= - - - (2)

Fig. A13.2
Then Eq. (1) becomes

o=k (ycosf-~xs8inf@gd) = = = === = - = (3)



Equation of bending stresses

Let M represent the bending moment in the
plane of the loads; then the moment about axis
¥-X and Y-Y is M, = M cos & and I, = M sin ©.
The moment of the stresses on the beam sectlon

about axis X-X is / o da y. Hence, taking
moments about axis ¥X-X, we obtaln for equil-

ibrium,

Mcos @=/oday
= [k {cos @ y®da - sin @ xyda)
=kcos @ /S yda -ksing [ xyda - -- - (4)
In similar manner, taking moments about

the Y-Y axlis

Msin®e =/0dax
whence

Msin @ =-ksinf /x%a + k cos § / xyda(4a)
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Equation of bending stresses

Mcos 86=/0oday
= / k (cos @ y®da - sin @ xyda)

=kcos ¥ S y*da -ksing [/ xyda - - - - (4)

The flber stresses can be found without
resort to principal axes or to the neutral
axlis.

Equation (4) can be written:
My =k cos § I, -k sin ¢ Iyy === ==~ (11)

where Iy = [/ y®da and Iyy = / xyda, and My =
M cos @.
In 1ike manner,

M

y=-ksing I, +kecos Iy, ----- (12)

Plane
of loads

Fig. A13.2



Equation of bending stresses

Solving equationz (11) and (12) for sin @ and

cos @ and substituting their values In equation
(3), we obtain the following expression for the

fiber stress op: -

_ (MyIy - Hglxy] o (MxIy - ”?IEF)F - (13)

% LI, - 1oy
For simplification, let

K:L = I:{}rf’(lx y'

H

Ka = Iy/(Iyly

]

Kas

Substituting these values In Equatlion (13): -

op = ~ (KaMy = KMy ) x = (KoM = KM )y

I/ (Iyxly -

- (14)
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Equation of bending stresses

The bending stresses about symmetric x and

y axes (Principal axes),

op = - x¥ _ Myx
b R

If the section is symmetric and M,. = 0, then

_Myx

Ly

I the section is symmetric and M,, = 0, then

Op =

M,y
L

Op = —
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Process for calculating the Neutral Axis
position

1. Define the stress equation to equal to zero.

—v. X 2 —

ﬂb=

2. Then,
(Kally - KaMy)x = - (KoM, - KM, )y

Which applies to any point on the neutral axis.

3. The neutral axis equation is

(KoMy - KiMy) Y

tan @ = - —
(KEPII - Elﬂy} x Fig.




Neutral Axis and centroid

» Neutral axis passes through the centroid.
» Centroid depends only on the section geometry.

J xdA _ Yit1 %A
A LA

X =

» The neutral axis depends on the loading condition in addition to the
section geometry

{K;M}r = KJ.H."F.} _ X
(Kl - Kally)

X - #x
The centroid is important to determine the section moment of o w e
inertia and the neutral axis is important to determine the IR Y\m-"‘"

maximum stresses or the section stress distribution.

tan @ = -

Fig. A13.2
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