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System Modeling

➢We aim to develop mathematical models from schematics of physical systems.

➢The mathematical model is obtained by applying the fundamental physical
laws of science and engineering.

➢A system mathematical model is usually a differential equation that relates the
system input to the system output.



Transfer function

The transfer function is a function that algebraically relates a system’s output to its
input.

This function will allow separation of the input, system, and output into three
separate and distinct parts.

It allows us to algebraically combine mathematical representations of subsystems to
yield a total system representation.

• Let us begin by writing a general nth-order, linear, time-invariant differential
equation,



Transfer function in frequency domain

D.E that mathematically 

represent the system

Solve the D.E. in

Frequency domain using

Laplace Transform.

Construct the T.F.

The main T.F. function can be

divided into subsystems using

Partial Fraction.



Laplace Transform

➢ Operational method that is used to solve linear differential equations.

➢ It transforms functions such as the exponential functions into
algebraic functions of complex variable s.

➢Operations such as integration or differentiation can replaced by
algebraic equations in the complex plane.

➢ It allows the use of graphical techniques for predicting the system
performance without actually solving the system differential equation.

𝑠 = 𝜎 + 𝜔𝑗



Complex variables

Complex variable

Complex function

Magnitude     𝐹(𝑠) = 𝐹𝑥
2 + 𝐹𝑦

2

Angle   𝜃 = 𝑡𝑎𝑛−1
𝐹𝑦

𝐹𝑥

Complex conjugate    𝐹(𝑠) = 𝐹𝑥 − 𝐹𝑦𝑗

𝑠 = 𝜎 + 𝜔𝑗

𝐹(𝑠) = 𝐹𝑥 + 𝐹𝑦𝑗



Euler’s theorem

The power series expansion of cos 𝜃 and sin 𝜃 take the form

Then

Since 

So we can see that Euler’s theorem



Euler’s theorem



Laplace Transform



Laplace transform theorem



Laplace transform formulas



Laplace transform formulas



Examples

Using the Laplace theorem 

ℒ 𝐴 =
𝐴

𝑠
⇒ ℒ 𝐴𝑒−𝑎𝑡 = 𝐹 𝑠 + 𝑎 =

𝐴

𝑠 + 𝑎



Examples



Inverse Laplace transform

The function is partitioned using partial fraction



Partial fraction
F(s) has real and distinct poles only



Partial fraction
F(s) has real and distinct poles only



Partial fraction - Example
F(s) has real and distinct poles only



Case 2. Roots of the Denominator of F(s) Are 
Real and Repeated

put s = -1 which gives 𝐾1= 2, and letting s = -2 ,

then 𝐾2= -2

𝐾3 can be found by differentiating the 

previous equation w.r.t. s to isolate 𝐾3 and put s = -2.

Hence 𝐾3= -2



Case 3. Roots of the Denominator of F(s) Are 
Complex or Imaginary

𝐾1 is found in the usual way to be 3/5.

𝐾2 and 𝐾3 can be found by first

multiplying the shown equation by the

lowest common denominator,

𝑠 𝑠2 + 2𝑠 + 5 , and clearing the

fractions.
Balancing coefficients, 𝐾2 +

3

5
= 0, and 𝐾3 +

6

5
= 0

then, 𝐾2 = −
3

5
, and 𝐾3 = −

6

5

⇒ ⇒



Transfer function in frequency domain

D.E that mathematically 

represent the system

Solve the D.E. in

Frequency domain using

Laplace Transform.

Construct the T.F.

The main T.F. function can be

divided into subsystems using

Partial Fraction.



System transfer function-Example

Given the system D.E (mathematical

model), find the system T.F.?

Solution:

The T.F. takes the form

From the Laplace

transform table (the

differentiation theory)

Assume that r(t) is defined as step input u(t), find the system response c(t)?



System transfer function-Example

Using partial fraction

Using L.T. Table

From the Laplace

transform table



System Dynamics and control- Remember

➢Our objective is to understand the system dynamics behavior.

➢To do so, we desire to model the system using the proper
mathematical model.

➢Then, we want to solve this mathematical model to obtain the system
response.

➢Finally, we wish to study the system response (performance).

➢But, we can not model, solve, or analyze a system without deep
understanding of it physics .



A - Translational Mechanical 
Systems



Translational Mechanical Systems

➢ Mechanical systems have three passive, linear

components.

➢ Two of them, the spring and the mass, are energy-

storage elements; one of them, the viscous damper,

dissipates energy.

K, 𝑓𝑣, and M are called spring constant, coefficient of

viscous friction, and mass, respectively.



Translational Mechanical Systems

F(t) [N], x(t) [m], v(t)

[m/s], K [N/m], 𝑓𝑣
[N.s/m], M [kg]



Mechanical system equation of motion

The mechanical system requires one differential equation, called the equation
of motion, to describe it. That can be constructed by the following steps:

1. begin by assuming a positive direction of motion, for example, to the
right.

2. Then, draw a free-body diagram, placing on the body all forces that act on
the body either in the direction of motion or opposite to it.

3. Next use Newton’s law to form a differential equation of motion by
summing the forces and setting the sum equal to zero.

4. Finally, take the Laplace transform of the differential equation, separate
the variables, and derive the transfer function.



Mechanical system equation of motion
Example

Find the transfer function (T.F.) of the Mass,
spring, and damper system shown in the figure.

1. begin by assuming a positive direction of
motion, for example, to the right.

Positive direction (axis)



Mechanical system equation of motion
Example

2. Then, draw a free-body diagram, placing on the
body all forces that act on the body either in the
direction of motion or opposite to it.

Positive direction (axis)

From the element table



Mechanical system equation of motion
Example

3. Next use Newton’s law to form a differential
equation of motion by summing the forces and
setting the sum equal to zero.

Positive direction (axis)



Mechanical system equation of motion
Example
4. Finally, take the Laplace Transform of the differential
equation, separate the variables, and derive the transfer
function.

Assume zero initial conditions,

Positive direction (axis)

From the Laplace Transform table 

(differentiation theorem)



Single degree of freedom system

➢The system that we solved early has one
degree of freedom. i.e. the system has one
independent motion.

➢We called this system “Single degree of
freedom system”.

➢Subsequently, there is one equation of
motion for this system.

Number of equations of motion = number of degrees of freedom



Multi-degree of freedom system

➢In multi-degree of freedom
systems: we have more than one
degree of freedom.

➢And we have more than one
equation of motion.

➢In order to solve such a
problem, we draw a free-body
diagram for each point of
motion and then use
superposition.



Mechanical system equation of motion
Example-Two-degree-of-freedom system

Find the transfer function (T.F.) of the Mass,
spring, and damper system shown in the figure.

1. begin by assuming a positive direction of
motion, for example, to the right. Positive direction (axis)



Mechanical system equation of motion
Example-Two-degree-of-freedom system

2. Then, draw a free-body diagram, placing on the
body all forces that act on the body either in the
direction of motion or opposite to it.



Mechanical system equation of motion
Example-Two-degree-of-freedom system
3. Next use Newton’s law to form a differential equation of
motion by summing the forces and setting the sum equal to zero.

4. Finally, take the Laplace Transform of the differential equation,
separate the variables, and arrive at the transfer function.

Assume zero initial conditions,



Mechanical system equation of motion
Example-Two-degree-of-freedom system
3. Next use Newton’s law to form a differential equation of
motion by summing the forces and setting the sum equal to zero.

4. Finally, take the Laplace Transform of the differential equation,
separate the variables, and arrive at the transfer function.

Assume zero initial conditions,



Mechanical system equation of motion
Example-Two-degree-of-freedom system



B – Electrical Systems



Electrical systems

Equivalent circuits for the electric networks consist of three passive 
linear components: resistors, capacitors, and inductors. 



Electrical systems

Equivalent circuits for the electric networks consist of three passive 
linear components: resistors, capacitors, and inductors. 



Electrical versus mechanical systems



Electrical systems

Transfer functions can be obtained using Kirchhoff’s voltage law and summing
voltages around loops or meshes.

We call this method loop or mesh analysis and demonstrate it in the following
example.

➢Kirchhoff’s current law: “The sum of the currents at any
junction must equal zero”

➢Kirchhoff’s voltage law: “The sum of the potential differences across all elements
around any closed circuit loop must be zero”



Example

Summing the voltages around the loop, assuming zero initial conditions, yields
the integro-differential equation for this network as

Changing variables from current to charge using                       , yields 

From the voltage-charge relationship for a capacitor



Example

Substituting in the equation

Taking the Laplace transform assuming zero initial conditions, rearranging terms,
and simplifying yields

Solving for the transfer function



Electric systems

Let us now develop a technique
for simplifying the solution for
future problems. take the
Laplace transform of the
equations in the voltage-current
column, assuming zero initial
conditions.



Notice that this function is similar to the 
definition of resistance, that is, the ratio of 
voltage to current. 

But, unlike resistance, this function is 
applicable to capacitors and inductors and 
carries information on the dynamic behavior 
of the component, since it represents an 
equivalent differential equation. 

We call these particular transfer functions 
impedance. 

Electric systems



Electric Systems

Let us now demonstrate how the concept of impedance simplifies the
solution for the transfer function. The Laplace transform of equation in
the previous example, assuming zero initial conditions, is



Example

Given the network in the following Figure, find the transfer function,



Example

The first step in the solution is to convert the network into Laplace
transforms for impedances and circuit variables, assuming zero initial 
conditions. 



Example

By combine the two terms and solving the two equations together to 
obtain the T.F.



C – Rotational Mechanical 
Systems



Rotational Mechanical System 

Rotational mechanical systems are handled the same way as
translational mechanical systems, except that torque
replaces force and angular displacement replaces translational
displacement.

The mechanical components for rotational systems are the same as those
for translational systems, except that the components undergo rotation
instead of translation.



Rotational Mechanical System 

Rotational mechanical systems are 

based on three passive components:

➢ Inertia

➢ Spring, and 

➢ Damper 



Rotational Mechanical System 



Translational and rotational mechanical 
systems



Rotational Mechanical System 

Notice that the symbols for the components look the same as
translational symbols, but they are undergoing
rotation and not translation.

Also notice that the term associated with the mass is replaced by inertia.
The values of K, D, and J are called spring constant, coefficient of
viscous friction, and moment of inertia, respectively.



Example - 1

➢Find the transfer function,                   , for the rotational system 
shown
in the Figure. 

➢The rod is supported by bearings at either end and is undergoing 
torsion. A torque is applied at the left, and the displacement is 
measured at the right. 



Example - 1

First, obtain the schematic from the physical system. Even though
torsion occurs throughout the rod in Figure 2.22(a),9 we approximate the system
by assuming that the torsion acts like a spring concentrated at one particular point
in the rod, with an inertia J1 to the left and an inertia J2 to the right.10 We also
assume that the damping inside the flexible shaft is negligible. The schematic is
shown in Figure 2.22(b). There are two degrees of freedom, since each inertia can
be rotated while the other is held still. Hence, it will take two simultaneous
equations to solve the system.

Next, draw a free-body diagram.



Example - 1



Example - 1



Example - 1



Example - 2

Write, but do not solve, the Laplace transform of the equations of
motion for the system shown in the Figure. 



Example - 2

The equations will take on the following form, similar to electrical mesh 
equations: 



Example - 2

The equations will take on the following form, similar to electrical mesh 
equations: 



Example - 2

The equations will take on the following form, similar to electrical mesh 
equations: 



Example - 2

The equations will take on the following form, 



D – Systems with Gears



Systems with gears

➢ Gears provide mechanical advantage to rotational systems. 

➢ Gears can provide more torque and less speed. 

➢ On the straightaway, you can shift to obtain more speed and less 
torque. 

➢ Thus, gears allow you to match the drive system and the load—a 
trade-off between speed and torque 



Systems with gears



Systems with gears

since the ratio of the number of teeth along the circumference is in

the same proportion as the ratio of the radii. We conclude that the

ratio of the angular displacement of the gears is inversely

proportional to the ratio of the number of teeth.



Systems with gears

What is the relationship between the input torque, T1, and the delivered

torque, T2? If we assume the gears are lossless, that is they do not absorb

or store energy, the energy into Gear 1 equals the energy out of Gear 2.

Since the translational energy of force times displacement becomes the

rotational energy of torque times angular displacement,

Thus, the torques are directly proportional to the ratio of the number

of teeth. 



Gears mechanical impedance 

➢ Figure a shows gears driving a
rotational inertia, spring, and viscous
damper.

➢ For clarity, the gears are shown by an
end-on view. We want to represent
Figure (a) as an equivalent system at
𝜃1without the gears.

➢ In other words, can the mechanical
impedances be reflected from the
output to the input, thereby eliminating
the gears?



Gears mechanical impedance 

From Figure (b), T1 can be
reflected to the output by
multiplying by N2/N1.
The result is shown in Figure (b),
from which we write the equation
of motion as



Gears mechanical impedance 
Now convert 𝜃2(𝑠) into an equivalent 𝜃1(𝑠), so 

that the previous equation 

will look as if it were written at the input. Using 

Figure (a), we get 



Gears mechanical impedance 

The final equation suggests the equivalent system at

the input and without gears shown in Figure (c). Thus,

the load can be thought of as having been reflected

from the output to the input.

Generalizing the results, we can make the following

statement: Rotational mechanical impedances can be

reflected through gear trains by multiplying the

mechanical impedance by the ratio



Gear example - 1

Find the transfer function,𝜃2(𝑠)/𝑇1(𝑠), for the system of Figure (a). 



Gear example - 1

The inertias, however, do not undergo linearly independent motion, 
since they are tied together by the gears. Thus, there is only one degree 
of freedom and hence one equation of motion. 



Gear example - 1

Let us first reflect the impedances (J1 and D1) and torque (T1) on the 
input shaft to the output as shown in Figure (b), where the impedances 

are reflected by (𝑁2/𝑁1)
2and the torque is reflected by 

𝑁2

𝑁1
.The 

equation of motion can now be written as 



Gear train

In order to eliminate gears with large radii, a gear train is used

to implement large gear ratios by cascading smaller gear ratios.



Gear example - 2

Find the transfer function,               , for the system of Figure (a). 



Gear example - 2



Gear example - 2



Linear and Nonlinear 
Systems



Nonlinearities



Linearization
The electrical and mechanical systems covered so far were assumed to 
be linear. However, if any nonlinear components are present, we must 
linearize the system before we can find the transfer function. 

1. The first step is to recognize the nonlinear component and write 
the nonlinear differential equation. 

2. We linearize it for small-signal inputs about the steady-state 
solution,  this steady state solution called equilibrium and is 
selected as the second step in the linearization process. 

3. Next, we linearize the nonlinear differential equation, and then 
we take the Laplace transform of the linearized differential 
equation. 

We usually linearize the system about certain point.



Example



Taylor series expansion 

For small excursions of x from x0, we can neglect higher-

order terms. 



Example

Linearize the following for small excursions about 𝑥 = 𝜋/4.



Example
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