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System Modeling

»\We aim to develop mathematical models from schematics of physical systems.

»The mathematical model is obtained by applying the fundamental physical
laws of science and engineering.

» A system mathematical model is usually a differential equation that relates the
system input to the system output.
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Transfer function

The %ransfer function iIs a function that algebraically relates a system’s output to Its
Input.

This function will allow separation of the input, system, and output into three
separate and distinct parts.

It allows us to algebraically combine mathematical representations of subsystems to
yield a total system representation.

* Let us begin by writing a general nth-order, linear, time-invariant differential
equation,

d"c(t) d" e(r) _ d"r(t) d" (e
+ a, + - +ayc(t) = by, + by,
drt I At 1 1"L|'r J © e 1=1 drm 1

a, + oo+ bor(t)



Transfer function in frequency domain
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Laplace Transform

» Operational method that is used to solve linear differential equations.

» It transforms functions such as the exponential functions into
algebraic functions of complex variable s.

»Operations such as Integration or differentiation can replaced by
algebraic equations in the complex plane.

» It allows the use of graphical techniques for predicting the system
performance without actually solving the system differential equation.
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Complex variables

Complex variable

S=0+ wj

Complex function
F(s) =F +Fj

Magnitude |[F(s)| = \/sz + Fy2

Angle 6 = tan™1 (ﬂ)

Fy

Complex conjugate F(s) = F, — Fj



Euler’s theorem

The power series expansion of cos 8 and sin 6 take the form
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Euler’s theorem

e’ = cos@ + }'51113

e ®=cosf — jsin6

cos @ = %(Efﬂ + ﬂ-';’lﬂ')

1
sin @ = 2} (EIH — e jvl?)
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Laplace Transform

LU0 = Fs) = f] F(f)e™" di

f(r) = afunction of time ¢ such that f(r) = O fort < 0
s = acomplex variable

£ = an operational symbol indicating that the quantity that it prefixes
is to be transformed by the Laplace integral [ e~ dt

F(s) = Laplace transform of f(7)

e+ jou
:..(‘E-][F(j'}] = f(f) = 23%}[ F(E:IEH ds, fort =10
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Laplace transform theorem

ltem no. Theorem Name
1. L] =F(s) = [, f(t)e™dt Definition
2. ZLkf(1)] = kF(s) Linearity theorem
3. Lf1(t) + f2(t)] = Fi(s) + Fals) Linearity theorem
4. Lle™™f(t)] = F(s + a) Frequency shift theorem
3. LIf(t-T) =eTF(s) Time shift theorem
6. Zfat)] = lF(lj Scaling theorem
- a
7. o %] = sF(s) — f(0-) Dhfferentiation theorem
[y r , - -
g o |2 — £F(s) — sf(0=) — f'(0=) Differentiation theorem
. " a2 . L Bt B Ay A
L [d'f ok ph1 Differentiation th
g o | L = "F(s) — Z‘Tﬂ (0=} 1Hlerentiation theorem
_ifi!"" . — \ F,
L v F(s) ati
10. o E f(r)dr] = — Integration theorem
L Jo— JAT)ET ] .
11. floo) = ll_l'lf'll sF(s) Final value theorem’
12. Initial value theorem®

F(O+) = _lirn sF(5)




Laplace transform formulas

M) Fis)
Unit impulse &(r) 1
) 1
Unit step 1(1) B . o
10 slm i 2 + o
! ) b
i 11 CO8 &+ ot
! 1
m=123... —_— . )
(n =1} 5" 12 sinh e R
fi! )
" n=123... et 13 cosh wi - 2
5 ¥ —w
l 1 - 1
—ar - ] — E, ol
€ s+a 14 I.—[ ) s(s + a)
| 1 1
— -m _ & b I
e (s + a)* 13 boat : (s + a)s + b)
1 — - 1 1 5
e n=1,273...) TR e _
(n = 1)t (s +a)" 16 = (s + a)is + b)
r! 1 1 1
" — — A
t"e (n=1223..) (s + ay'™*! 17 s [1 + o e we ) S5 + a)(s + b)




Laplace transform formulas
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Examples

Exponential function. Consider the exponential function
fir) =10, forr<10

= Ae ™, forr=0

where A and a are constants. The Laplace transform of this exponential function can be
obtained as follows:

F[Ae™] = f Ae “e " dt = A r e I gy =

A
0 il 5§ =

Using the Laplace theorem




Examples

Sinusoidal function. The Laplace transform of the sinusoidal function
fr) = 0, fort<0
= A sin wt, fort =0
where A and w are constants, is obtained as follows. Referring to Equation (2-3), sin w?

can be written

| B .

Hence sim ol

SO o

A :
¥[A sin wt] = —; r (et — e )e " dt
2j Jo

A 1 A 1 Aw
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Similarly, the Laplace transform of A cos wt can be derived as follows:

As
52+ w?

F[A cos wi] =




Inverse Laplace transform

EF©)] = LTF(s)] + LFs)] + - + LT [F,(5)]
=H@) + L) + -+ £0)

The function is partitioned using partial fraction




Partial fraction
F(s) has real and distinct poles only

B(s) K+ )+ 2 - (s+2,)

F(s) = = . form <n
(5) A(s) (+pds+py)---(s+p,)
= ﬂil = ﬂl ﬂz “ = ﬂ"
Fs) A(s) s+ p, " s+ ps * * s+ p, (2-14)
where a; (k=1,2,..., n) are constants. The coefficient a; is called the residue at the

pole at s = —p;. The value of a; can be found by multiplying both sides of Equation
(2-14) by (s + pi) and letting s = —py, which gives
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Partial fraction
F(s) has real and distinct poles only

s+ 3
F) = 7 e + 2)

The partial-fraction expansion of F(s) is

s+ 3 _ 4 4 a;
(s+1Ms+2) s+1 s+2

where @, and a; are found by using Equation (2-15):

F(s) =

s+3 5 + 3]

al = (S + ]-} (,3' + 1}{# -+ 2} o=—1 - 5 + 2 - = 2
i s+ 3 | (5 +3]
& = (S N 2} (-5' -+ 1}{:" + 2} g=—2 - s+ 1 =2 -

Thus

Ry = L£7(F(s)]

2 -1 e
= el —1
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Partial fraction - Example
F(s) has real and distinct poles only

2 2 K K-

F(s) = __ ._ §) = _ = . —
(s+1)(s+2) F(s) (s+1)(s+2) [5+1;|+(5+2;|



Case 2. Roots of the Denominator of F(s) Are
Real and Repeated

Fis) = _2 —
(s +1)(s+2)°
Fl)=—— =t R B
(s+1)(s+2) ((+1) (s+2)° (s+2)
put s = -1 which gives K;= 2, and letting s = -2, 2 5 K , -
1 = (s+ 2P ——+ K»+ (s + 2)K;
then K2: -2 s+ 1 (s +1) - :

K5 can be found by differentiating the 2 (s42)s
previous equation w.r.t. s to isolate K3 and put s = -2. Gr1E 1) K1+ K;
Hence K3= -2

flt) =2 " —2te ™ — 2



Case 3. Roots of the Denominator of F(s) Are
Complex or Imaginary

3
: : F(s) = — ._
K; is found in the usual way to be 3/5. TS 25 +9)
K, and K; can be found by first
Irnultuczlylng the shown equdatlon py tthe 3 K, . Kos + K-
owzes common -~ Genaminator, s(s2+25+5) s  s2+25+5
s(s“ + 2s + 5), and clearing the
fractions. : . 3 6
Balancing coefficients, (K2 + E) = 0, and (K3 + g) =0
AV A __3 —_5
3= (Kg +§)F + (K_‘:. +§)F+ 3 then1 KZ - 51 and KS 5
__ 3 3/5 3 s+2 C3/5 3(s+1)+(1/2)(2) 3 3 (1.
Fs) T s(s2+25+5) s 5SS +25+5 = F(s) = s 5 (s + ”2 gy = f0) ~5 3¢ (Lc152r+551n2e‘)



Transfer function in frequency domain

D.E that mathematically d"c(t) d" (1) __ 4" r(1) 4" 1r(t)
iy + iy + -+ Hiﬁtll-rrj — 'hm —— Tt 'hm 1
represent the system dt" de™

4o bor(t)

E-EIT” 1 ﬁ' fin 1

Solve the D.E. In
Frequency domain using (ans" + an15" "+ -+ a0)C(s) = (bus™ + bm-15™ ' + -+ bo)R(s)

L aplace Transform.

Construct the T.F. % — Gls) = “EH': o I++. - fﬂﬂ

The main T.F. function can be | o :
divided into subsystems using

Partial Fraction. Input Output
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System transfer function-Example

' ' lc(t) _ .
Given the system D.E (mathematical de| ’I—l—EL"[rJ —
model), find the system T.F.? dt

Solution:

sC(s) +2C(s) = R(s)

Cls) 1

The T.F. takes the form G(s) = [ =
Ris) s+2

Assume that r(t) is defined as step input u(t), find the system response c(t)?

1

C(s) = R(s)G(s) = 51 2)

From the Laplace
transform table (the
differentiation theory)
o |Y]

¥

) Eﬂ = sF(s) — f(0—)

r(t) = u(t), R(s) =1/s,



System transfer function-Example

C(s) = R(s)G(s) =~ [Si 3
Using partial fraction
Cls) — 192 _,glfz
Using L.T. Table
clt) = l — lf‘ =

From the
transform table

Unit step 1(1)

Laplace




System Dynamics and control- Remember

»Our objective Is to understand the system dynamics behavior.

»To do so, we desire to model the system using the proper
mathematical model.

» Then, we want to solve this mathematical model to obtain the system
response.

» Finally, we wish to study the system response (performance).

»But, we can not model, solve, or analyze a system without deep
understanding of it physics() .
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A - Translational Mechanical
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Translational Mechanical Systems

Spring
- - - <‘—» x(1)
» Mechanical systems have three passive, linear 0T 1
components. ) . |
» Two of them, the spring and the mass, are energy-
storage elements; one of them, the viscous damper, Viscous damper
dissipates energy. % ;"‘ Y
= (1)
T
K, f,, and M are called spring constant, coefficient of Mass

—r—= XI(f)

viscous friction, and mass, respectively.

M




Translational Mechanical Systems

Impedence
Component Force-velodty Force-displacement Lyls) =F(s)/X(s)
Spring
| AI—- x(f)
' N oy TR L
£ fﬁﬂr"" 10 flt) =K J,vit)dr f(t) = Kx(1) K
I|
£ F(©) [N], x(t) [m], v(t)
m/s], K [N/m],
Viscous damper [m/s] [ L f
[ ——= x(1) _ [N.S/m], M [kg]
II o PR ' i o PR ' dllf':l S
L H— fin) flt) =f,vi1) =1, dt fus
! ,
Mass
—_— il / .
g dv(t) 5 d x(t) .
Y = M - = M — Mx=
f(t) 1 rT fit) { o 1




Mechanical system equation of motion

The mechanical system requires one differential equation, called the equation
of motion, to describe it. That can be constructed by the following steps:

1.

begin by assuming a positive direction of motion, for example, to the
right.

Then, draw a free-body diagram, placing on the body all forces that act on
the body either in the direction of motion or opposite to it.

Next use Newton’s law to form a differential equation of motion by
summing the forces and setting the sum equal to zero.

Finally, take the Laplace transform of the differential equation, separate
the variables, and derive the transfer function.




Mechanical system equation of motion

Example

Find the transfer function (T.F.) of the Mass,
spring, and damper system shown in the figure.

1. begin by assuming a positive direction of
motion, for example, to the right.

Positive direction (axis)

—
K ——* X{[)
':}"-'5:.‘.1_?1.' i fi)




Mechanical system equation of motion

Exam p I e Positive direction (axis)
—

—T—= XII)

2. Then, draw a free-body diagram, placing on the S
body all forces that act on the body either in the 0000
direction of motion or opposite to it. E HM e f

fy

= (1) From the element table

Kx(t) -0
f(t) = Kx(1)

dx M_"" fir) »

f)y =1,

dr“ o dz,r{r']




Mechanical system equation of motion

Example

3. Next use Newton’s law to form a differential

equation of motion by summing the forces and
setting the sum equal to zero.

d°x(t) . dx(1)

dr? Vo dl

+ Kx(t) = f(1)

Positive direction (axis)
—

K

—= XI{I)

LM

— fi1)

- M

= 1)




Mechanical system equation of motion

Example

4. Finally, take the Laplace Transform of the differential
equation, separate the variables, and derive the transfer

function.
Assume zero initial conditions,

dx(t) . dx(r)

di? “Vdi

+ Kx(1) = /(1)
Ms*X (s) + [,sX(s) + KX(s) = F(s)

(Ms* +f,s + K)X (s) = F(s)

— F(s) 1 X(5)
_-'nlr'f.‘s'z -1 ,l'r '1:.‘5' + K Ms?+fs+K

G(s) = ‘F(ﬁ

X (s) |
)

Positive direction (axis)
—

—T—= XII)

K

000

I |
1 R
: Ml
I '
|
1

fy

From the Laplace Transform table
(differentiation theorem)

l:'z-ﬁf'fl-' — v Fixv) | ]

% ) = sF(s) — f(0-)
£f ) ,

o |3 — $F(s) — sf(0-) — '(0-)
fdt-



Single degree of freedom system

»The system that we solved early has one
degree of freedom. i.e. the system has one

Independent motion. X ——=x(1)
»We called this system “Single degree of A= 0001
freedom system”. 0 [iMibe g
| I TS
>Subsequently, there is one equation of ' _'
motion for this system. Ty

Number of equations of motion = number of degrees of freedom



Multi-degree of freedom system

»In  multi-degree of freedom
systems: we have more than one
degree of freedom.

»And we have more than one
equation of motion.

»In order to solve such a
problem, we draw a free-body
diagram for each point of
motion and then use
superposition.

"
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Mechanical system equation of motion
Example-Two-degree-of-freedom system

Find the transfer function (T.F.) of the Mass,
spring, and damper system shown in the figure.

1. begin by assuming a positive direction of
motion, for example, to the right. Positive direction (axis)

x;(1) X5(1)
. f, o
) ——— :

|

- -
I R |

: T W—-;;% K, [i:M; W_: :
= E
= -

L 0000 iR

[ N W S )
I|||||||||||'I||||||||||||||||||

i/ I




Mechanical system equation of motion
Example-Two-degree-of-freedom system

2. Then, draw a free-body diagram, placing on the
body all forces that act on the body either in the
direction of motion or opposite to it.

x(1) x5(1)

fity o by i
e i
— 0000 “— M K, M
S N S ) S e ||m| I - ||f|\'.| e e e

f‘ﬁ)I fl'zj

fK| + K_g ]Xﬂ.ﬂ - {KE + K.’- }Xﬂ{ﬂ ""_

(fy, + 1, )5X;(5) = —'* K2X>(s) e
j't 1 f'l 3 1 ﬂ"’fl .:. {fr: + fr.—l‘ H.XE{E.} -—1'1»‘;"'2 .
FO) —=f o 50 s

M |.'E'2X 18 ) - J'IHE_‘C:X Ef.ﬂ -ll—




Mechanical system equation of motion
Example-Two-degree-of-freedom system

3. Next use Newton’s law to form a differential equation of

motion by summing the forces and setting the sum equal to zero. %_ Wﬂ—.{l—
Ui puiay .

4. Finally, take the Laplace Transform of the differential equation, f*ﬂDLUU‘

separate the variables, and arrive at the transfer function. 5

Assume zero initial conditions,

| d°x(t) . dx(r)

'lef . R"__ — |
dr? P di (1) =J10)




Mechanical system equation of motion

Example-Two-degree-of-freedom system

3. Next use Newton’s law to form a differential equation of

motion by summing the forces and setting the sum equal to zero. K A-ﬂ*J}ﬂ* B %
4. Finally, take the Laplace Transform of the differential equation, ol 000 1 ¢
separate the variables, and arrive at the transfer function. 5 w

Assume zero initial conditions,

Mis*(f,, + Jo)s + (K1 + K2)| X1(s) = (f,,5 + K2) X2(s) = F(s)

—(fiss + K2)X1(s) + [Mas® + (fi, + /i) + (K2 + K3)] Xa(s) =0



Mechanical system equation of motion
Example-Two-degree-of-freedom system

'l|l”

—_ -

heo s
O | | e OO0 28 _ Gy = L
e _I/I—OID—Q—OI—\I_ - |

fr,) fr:/

(Mis” + ([, + 1,,)s + (Ki + K2))] —(f,.s + K2)
—(f,,s + K3) (Mys® + (f,, +f,.)s + (K2 + K3)]

F(s) (f, 5+K,) X5(5)
A




B — Electrical Systems



Electrical systems

Equivalent circuits for the electric networks consist of three passive
linear components: resistors, capacitors, and inductors.

— 0000 — dVAVAY —

Inductor Resistor Capacitor



Electrical systems

Equivalent circuits for the electric networks consist of three passive
linear components: resistors, capacitors, and inductors.

Impedance Admittance
Component Voltage-current Current-voltage Voltage-charge Z(s) = V(s)/I(s) Y(s) =1(s)/V(s)
4 e 1 [t dv(t) 1 1
v(t) = —/ i(t)dt i(t) =C v(t) =—=qlt) — Cs
Capacitor CJo dt ¢ Cs
: 1 1
A= v =ri) (1) = =v(1 (1) = R2LY R ~=G
Resistor R dt R
es1Stor
di(t 1 /! 2
0000 v(t) =L }r} i(f) = —/ vodr v = L494Y Ls 1
Inductor ¢ L Jo dr? Ls

Note: The following set of symbols and units is used throughout this book: v(r) — V (volts), i(1) — A (amps), g(t) — Q (coulombs), C — F (farads),
R — () (ohms), G — () (mhos), L. — H (henries).



Electrical versus mechanical systems

X o e oo

o o ey i e Force-velocaty Foroe-displ aece e ik i) = FIs) /X (s)
Springo

; Ay

=000 - o Fe) = K J§viz)ds F(e) — Kx(£) K

- .

Wiscous damiper

| ——=— )

:: _| _I_ FCE Fle)d = Fo.vilr) e =_fL-T .
= - —
MMas=ss )
R o Flz) = AL d:[:} Fle)y = AT d_ﬂ;l; ) AL 52
Impedance Admittance
Component Voltage-current Current-voltage Voltage-charge Z(s) = V(s)/I(s) Y(s) =I(s)/V(s)
4 e 1/t dv(t) 1 1
v(t) = —/ i(t)dt i(t)y=C v(t) =—=qlt) — Cs
Capacitor CJo dt ¢ Cs
: 1 1
AN~ v =ri) (1) = (1 (1) = RZLY R ~=G
Resis R dt R
esistor
— ()()()(] I di(t 1 sl 2
v(t) =L d(r} i(f) = —/ vmdr v =LY Ls 1
Inductor L Jo dr® Ls



Electrical systems

Transfer functions can be obtained using Kirchhoft’s voltage law and summing
voltages around loops or meshes.

We call this method loop or mesh analysis and demonstrate it in the following
example.

»Kirchhoff’s  current law: “The sum of the currents at any
junction must equal zero”

»Kirchhoff’s voltage law: “The sum of the potential differences across all elements
around any closed circuit loop must be zero”



Example

Summing the voltages around the loop, assuming zero initial conditions, yields
the integro-differential equation for this network as

d:fﬁm(rwcfz(r dr = v(1)

Changing variables from current to charge using i(t) = dq(t)/dt | yields

“q(t) | dq(1) _
L a2 T +c q(t) =v() L R
—0000" VW~
From the voltage-charge relationship for a capacitor A +
v(i) (T C =< vec(
(}'(f) = CV{_‘(E) i(1)




Example

Substituting in the equation

2 |
L%—F R%‘I—%Q(f) = v(t)

Taking the Laplace transform assuming zero initial conditions, rearranging terms,

and simplifying yields
(LCs*> + RCs 4+ 1)V (s) = V(s)

Solving for the transfer function

V{_‘(.S’) B lKLC
Vis) , R 1 L R
A) —8§ —
"' LC ~ 000N~
Vis) — Ve (s) +
A8 ol i)
gV IPe N e o () N
L™ LC i(1)




Electric systems

et us now develop a technique
for simplifying the solution for
future problems. take the
Laplace transform of the
equations In the voltage-current
column, assuming zero Initial
conditions.

For the capacitor,

V(s) = & 1(s)

For the resistor,

V(s) = RI(s)

For the inductor,

V(s) = Lsl(s)

Now define the following transfer function:

Vis)
I(s)

= Z(s)




Electric systems

Notice that this function iIs similar to the
definition of resistance, that is, the ratio of
voltage to current.

But, unlike resistance, this function is
appllcable to capacitors and inductors and
carries information on the dynamic behavior
of the component, since It represents an
equivalent differential equation.

We call these particular transfer functions
Impedance.

For the capacitor,

V(s) = éf(s)
For the resistor,

V(s) = RI(s)
For the inductor,

V(s) = LsI(s)

Now define the following transfer function:

6)

Is) ~ 21




Electric Systems

Let us now demonstrate how the concept of impedance simplifies the
solution for the transfer function. The Laplace transform of equation In

the previous example, assuming zero initial conditions, Is

(Ls + R +é)f(s) = V(s)

Ls R

— 0000 VA~

Sum of impedances|/(s) = |Sum of applied voltages
[ p [1(s) = | PP ges| o) T ) AR e
I(s) ""’/




Example

Given the network in the following Figure, find the transfer function,

I(s)/V(s).
R R
+
vif) @) L :| ' ;:_ Ve (F)
i(1) -—-— i2(1)




Example

The first step in the solution is to convert the network into Laplace
transforms for impedances and circuit variables, assuming zero initial

Around Mesh 1

Around Mesh 2.

|

conditions.
Sum of
Sum of .
] impedances
impedances | [{(s) —
common to the
| around Mesh 1 |
two meshes
Sum of
. Sum of
impedances ,
Ii(s) +| 1mpedances
common to the
around Mesh 2
two meshes

12(5)

] 1'2(5)

|

Sum of applied

Mesh 1

Sum of applied
voltages around
Mesh 2

voltages around

RiI(s) + Lsl(s) — Lsl>(s) = V(s)

1
LsI>(s) + RyI»(s) + afg(.‘i‘) — LsIi(s) =0

|




Example

By combine the two terms and solving the two equations together to
obtain the T.F.

(R1 + Ls)I1(s) — LsI(s) = V(s)
— LsIi(s) + (Ls + Ry + é)fg(&‘) =0
Gls) = I(s) Ls LCs?

V(.S') A (Rl + RE)LC:SE' + (R]Rgc—l— L)S + Ry



C — Rotational Mechanical
Systems
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Rotational Mechanical System

Rotational mechanical systems are handled the same way as
translational mechanical systems, except that torque
replaces force and angular displacement replaces translational

displacement.

The mechanical components for rotational systems are the same as those

for translational systems, except that the components undergo rotation
Instead of translation.



Rotational Mechanical System

Rotational mechanical systems are
based on three passive components:

> Inertia
» Spring, and
» Damper

T(r) (1)
Inertia /\

J

(1) (1)

Spring /" /Y
sl W\

Viscous 71y) 6 (1)

% dampler l/\/\

D\




Rotational Mechanical System

Torque-angular Torque-angular Impedence
Component velocity displacement Zy(s) = T(s)/0(s)
T(r) 6(1)
Spring
T(t)=K fé w(1)dt T(t) = Ko(1) K
K
Viscous 711y) (1)
damper
| /\[\ I'(t) = Dw(r) I(t) = —i(:) Ds
|
5\
T(1) 0(1)
Inertia doo(t) d*6(1)
_ _ 2
e‘ T(t)=J o T(t)=J o2 Js

J

Note: The following set of symbols and units is used throughout this book: 7(f) — N-m (newton-meters),
#(t) — rad(radians), @(t) — rad/s(radians/second ), K — N-m/rad(newton- meters/radian), D — N-m-s/rad
(newton- meters-seconds/radian). J — kg-m?(kilograms-meters? — newton-meters-seconds’/radian).



Translational and rotational mechanical

Systems

Component

Force-velodity

Force-displacement

Spring

4‘_.

NS

K

Viscous damper

——= Xif)

F— f(0)

£
Mass

—r—= X([)

_Ir|.r|

f(t) =K [,v(r)dr

fley=fv(t)

dv(t)

() — M
fity=M .

flt) = Kx(1)

dx(t)

) =f—-

fity=M

J:I[f
di2

i
!

| llmputl_t_'ﬂli'} | Torque-angular Torque-angular Impedence
Zy(s) = F(s)/X(s) Component velocity displacement Zy(s) = T(s)/0(s)
T(r) 6(1)
Spring
K gw T(0) = K [jo(e)dr T() = Kot ‘
K
Viscous T(1) (1)
damper
| A T(t) = Deo(t rw=p%h DS
II‘ l."1'- _— dr
> U\
(1 6(n
Inertia :
| L do(t) d=o(t) 2
Ms* . I(t)=J dt T dr "

J




Rotational Mechanical System

Notice that the symbols for the components look the same as
translational symbols, but they are undergoing
rotation and not translation.

Also notice that the term associated with the mass is replaced by inertia.
The values of K, D, and J are called spring constant, coefficient of
viscous  friction, and moment of Inertia, respectively.




Example - 1

»Find the transfer function, 4,s)/7(s). , for the rotational system
shown
In the Figure.

» The rod iIs supported by bearings at either end and is undergoing
torsion. A torque is applied at the left, and the displacement is
measured at the right.

T(r) 6,(r) 6-(1)

T(r) 64(1) é- n*}

VLN % CED "" ) = E
RZ2 \Jiez
earing Bearing D, D,

D, Torsion D,




Example - 1 @

First, obtain the schematic from the physical system. Even though
torsion occurs throughout the rod in Figure 2.22(a),9 we approximate the system
by assuming that the torsion acts like a spring concentrated at one particular point
In the rod, with an inertia J1 to the left and an inertia J2 to the right.10 We also
assume that the damping Inside the flexible shaft is negligible. The schematic is
shown in Figure 2.22(b). There are two degrees of freedom, since each inertia can
be rotated while the other is held still. Hence, it will take two simultaneous
equations to solve the system.

Next, draw a free-body diagram.



Example - 1

@, (s) Direction

@,(s) Direction

6,(s) Direction

T{‘-‘;) ~ 71526,(s) T(S) ~ J1526,(s
~ /‘51"?9 (s) -~ }Dlsg
K6,(s) K8(s) Kﬁ](’f)

.~—_
K@(s)
(a) (b) (c)

FIGURE 2.24 a. Torques on
J> due only to the motion of
J>: b. torques on J, due only
to the motion of J;: ¢. final
free-body diagram for J,

FIGURE 2.23 a. Torques on

J1 due only to the motion of J1;
b.torques onJ; due only tothe
motion of J,; ¢. final free-body

diagram for J;

@-(s) Direction

6>(s) Direction

&,(s) Direction

K6,(s) Kﬁ’l(s}
~ J»5265(s) A = /25765(s)
@/‘ Dy565(s) @ @fﬂa 565(s)
Kﬁg KQZ(S)
(a) (b) ()



T(r) 8,(1) &5(1)

Example - 1 D S

Summing torques respectively from Figures 2.23(¢) and 2.24(c) we obtain the
equations of motion,

(J1s* + Dys + K)6, (s) — K6,(s) = T(s) (2.127a)

—K61(s) + (Jas* + Das + K)a2(s) =0 (2.127b)

from which the required transfer function is found to be

f}g (S) K
= 2.128
T(s) A ( )
as shown in Figure 2.22(c), where
(J15* + Dis + K) —K

—K (JQSE—I—DQS—FK)




I(1) €,(1) B5(1)

Example - 1 %_ SEDLUVED

Notice that Eq. (2.127) have that now well-known form

imlsjlelg]a?lf:es  Sumof | Sum of
connected |[6(s) — 1H;}l;'3tiiﬂel;ies 6y(s) = | applied torques (2.129a)
to the motion 9 and 6 at 6,
i at 91 i - 1 2]
[ Sumof [ Sumof |
mpedances impedances Sum of
- blztween 61(s) + | connected |6,(s) = [ applied torques | (2.129b)
to the motion at 6,
| 6Grand 6y | 2t 6,



Example - 2

Write, but do not solve, the Laplace transform of the equations of
motion for the system shown in the Figure.

@,(1) 1(r) 8(1) 65(1)

e ?af. =




é,(1) (1) a,(1) 65(1)

Example - 2 %Dl SEB, (U OED —%

The equations will take on the following form, similar to electrical mesh
eguations:

[ Sumof _ i
, Sum of
impedances impedances
connected | 6;(s) — P 6 (s)
_ between
to the motion
91 and 92
at Q] | - -
- g -
, Hmo Sum of
— impedances f3(s) = | applied torques
between 3\8) = | 4PP o q
i 91 and 6'3 ) o




é,(1) (1) a,(1) 65(1)

Example - 2 %Dl SEB, (U OED —%

The equations will take on the following form, similar to electrical mesh
eguations:

- Sumof Sum of

, impedances
impedances

— 6 ted |6a(s
between 1(s) +| connecte 2(s)

to the motion
i 9] and 92

- i at 62

Sum of

, Sum of
_ | mpedances 63(s) = | applied torques
between 7 — | 9PP 9
at 6>

i 92 and 93 i




é,(1) (1) a,(1) 65(1)

Example - 2 %Dl SEB, (U OED —%

The equations will take on the following form, similar to electrical mesh
eguations:

Sum of Sum of
impedances impedances
between between

6'1 and 6}3 i 192 and 93 ]

Sum of
impedances Sum of

+ | connected |[6s(s) = [applied tnrques}
to the motion at 63

at 63




é,(1) (1) a,(1) 65(1)

Example - 2 %Dl SED, (UL} VD 7{%

The equations will take on the following form,

(J15*> + D1is + K)6, (s) —K6,(s) —005(s) = T(s)
— K64 (.S) —i—(JTESZ + DHs + K}Hg (.S) —D»565 (5) = 0
—064 (.S) —D~s65 (.S) —I—(J332 + Dss + D25)6'3 (5) =0
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Systems with gears

» Gears provide mechanical advantage to rotational systems.
» Gears can provide more torque and less speed.

» On the straightaway, you can shift to obtain more speed and less
torque.

» Thus, gears allow you to match the drive system and the load—a
trade-off between speed and torque



Systems with gears

The linearized interaction between two gears is depicted in Figure 2.27. An
input gear with radius r; and N, teeth is rotated through angle #,(7) due to a
torque, 71(¢f). An output gear with radius r, and N teeth responds by rotating
through angle 6,(¢) and delivering a torque, 7,(¢). Let us now find the relation-
ship between the rotation of Gear 1, 6;(¢), and Gear 2, 6,(1).

ri6h = rb- T

Input
drive gear,

Gear |  Output
driven gear,

Gear 2
FIGURE 2.27 A gear system



N . .
2 [9:”} Tl[f}

NN

T\(r) 64(1) N,
.'/ -"),

Systems with gears

ll%‘\_ I"\h
' Input
drive gear,
Gear |  Output
driven gear,
- - ] .. Gear 2
since the ratio of the number of teeth along the circumference is In

the same proportion as the ratio of the radii. We conclude that the
ratio of the angular displacement of the gears iIs inversely
proportional to the ratio of the number of teeth.

6, r N
QI_FQ_NZ




N _ .
2 [9:[4"} T:[f}

\.'I

T(1) 6,(1) N
7

Systems with gears l.;

o \
Input
drive gear,
ear |  Output

What is the relationship between the input torque, T1, and the delivered™ " diven e

Gear 2

torque, T2? If we assume the gears are lossless, that is they do not absorb
or store energy, the energy into Gear 1 equals the energy out of Gear 2.

Since the translational energy of force times displacement becomes the
rotational energy of torque times angular displacement,

T, 6 N
T10, = T»6, —2_A_12

T, 6 N

Thus, the torques are directly proportional to the ratio of the number
of teeth.

)



Gears mechanical impedance

rotational inertia, spring, and viscous
damper.

» For clarity, the gears are shown by an
end-on view. We want to represent
Figure (az as an equivalent system at
6, without the gears.

» In other words, can the mechanical
Impedances be reflected from the
output to the input, thereby eliminating
the gears?

N>

Ty(r) 64(n)

A
> Fi(%_ure a shows gears driving a j—%

N
6(1)

(¢)




Gears mechanical impedance

Ty(r) 64(n)

A
From Figure (b), T1 can be (E 1

reflected to the output by
multiplying by N2/N1. "
The result Is shown In Figure (b),
from which we write the equation
of motion as

Nz K(h_@j
N1

(Js* + Ds + K)6,(s) = T (s)



Gears mechanical impedance

Ti(r) 64(n)

Now convert 6, (s) into an equivalent 8,(s), so ? ? N, v

T’{”E 0-(1) D

that the previous equation

N
(Js2 + Ds + K)0(s) = Ty (s) N—E
1

will look as if it were written at the input. Using N, 2
Figure (a), we get

After simplification,



Gears mechanical impedance

8,(1)

Ty(r)

The final equation suggests the equivalent system at A (!

the input and without gears shown in Figure (c). Thus,
the load can be thought of as having been reflected
from the output to the input.

{J (ﬁ—i) 232 - D(ﬁ—;) zs - K(%)j] 6:1(s) = T1(s)

Generalizing the results, we can make the following
statement: Rotational mechanical impedances can be
reflected through gear trains by multiplying the
mechanical Impedance by the ratio

Number of teeth of
gear on destination shaft

Number of teeth of
gear on source shaft

N>

Ny
B5(1) D

(¢)

.'\rr] !91['.” D
550
o J
0000
K




Gear example - 1

Find the transfer function,8,(s) /T, (s), for the system of Figure (a).

T1(1) 64(2)

ANA
Lo\

t :




Gear example - 1

The Inertias, however, do not undergo linearly independent motion,
since they are tied together by the gears. Thus, there is only one degree
of freedom and hence one equation of motion.

Ti(r) €4(1)

ANA
L\

t :




Gear example - 1 b E

(a)

Let us first reflect the impedances (J1 and D1) and torque (T1) on the
Input shaft to the output as shown in Figure (b), where the impedances

are reflected by (N, /N,)?and the torque is reflected by (—xz) .The
1
equation of motion can now be written as

N
(Ues> + Des + K)o (s) = Ti(s) 37
1

Ky

N>\? N>\?
J.=J1| — Jr: D,=D{|— Dy,: K,=K
1(N1) + J 2! 1(N1) + D> 2

Solving for 6,(s)/Ti(s), the transfer function is found to be

. 6}2(3) _ Nz/Nl
) =T " T+ Ds T K,




Gear train

In order to eliminate gears with large radii, a gear train is used
to implement large gear ratios by cascading smaller gear ratios.




Gear example - 2

Find the transfer function, %)/71(s)  for the system of Figure (a).

Ty 6.

T 6,(1) v J,T {? L{) 7, )—

ANA
| | De
VoA J1. Dy

N> N;

¥ 72

D-. J A N\ NiN; \
== - J.=0,+(J++ 0 | — | +(Jy+ J2) -
em ST LTS (N) 4 (NN

24¥4
) s 1
; 2
* D,=D,+D, (N_l)
N>

(a) (b)




Ty(r) 640

ro o0 7«
. -
Gear example - 2 %»«)aw(m)”

Jo=d+ (I +T3) (F

NN,
2 244
Ny ,
; 2
¢ D,=D,+D, (_Nl)
N

(a) (b)

SOLUTION: This system, which uses a gear train, does not have lossless gears. All of
the gears have inertia, and for some shafts there is viscous friction. To solve the
problem, we want to reflect all of the impedances to the input shaft, ;. The
gear ratio is not the same for all impedances. For example, D, is reflected
only through one gear ratio as D>(N;/N 2)2, whereas J4 plus Js is reflected through
two gear ratios as (J4 + Js)[(N3/N4)(N1/N>)]>. The result of reflecting all imped-
ances to ¢, 1s shown in Figure 2.32(b), from which the equation of motion is



Gear example - 2 S =

2 2
Ds. J> Iy N, NN
- - J.=01+(Jh+]y) |[— ]| + g+ T
e=J1+(a+Ts (N atJs) NoNs

J 2
4 D,=D,+D, (N_l)
N>

(Jos* + D.5)61(s) = T (s) (@ (b)
where
N{\? NiN;\?
Jo=J Jr +J3) | — Ji+J
1+ (J2 + 3)(N2) + (J4 + 5)(N2N4)
and

Ni\?
D.=D D> —
1+ E(Nz)

From Eq. (2.142), the transfer function is

. 91 (S) B 1
- Ty(s) J.s2+ D.s

G(s)



Linear and Nonlinear
Systems



Nonlinearities

A linear system possesses two properties: superposition and homogeneity. The
property of superposition means that the output response of a system to the sum of
inputs is the sum of the responses to the individual inputs. Thus, if an input of rq(¢)
yields an output of ¢;(¢) and an input of r,(¢) yields an output of ¢, (¢), then an input of
r1(t) + r»2(t) yields an output of ¢;(¢) + c»(¢). The property of homogeneity describes
the response of the system to a multiplication of the input by a scalar. Specifically, in
a linear system, the property of homogeneity is demonstrated if for an input of ry(¢)
that yields an output of ¢;(¢), an input of Arq(t) yields an output of Aci(¢); that is,
multiplication of an input by a scalar yields a response that is multiplied by the same

scalar.
A A

Output
Output

0 1 2 3 4 0 1 2 3 4



|_Inearization

The electrical and mechanical systems covered so far were assumed to fx)
be linear. However, if any nonlinear components are present, we must A
linearize the system before we can find the transfer function. 5fix)
A
1. The first step is to recognize the nonlinear component and write  _ =0 m======-p===~ .
the nonlinear differential equation. & |
@ fixg) F—————-% l : - OX
2. We linearize it for small-signal inputs about the steady-state | i
solution, this steady state solution called equilibrium and is | .
selected as the second step in the linearization process. | |
l -
3. Next, we linearize the nonlinear differential equation, and then 0 Xo * l
we take the Laplace transform of the linearized differential Input

equation.

We usually linearize the system about certain point.



Example ¥

. Slope = -5
3
Linearize f(x) = Scosx about x = /2. 2 5
LV
-4 _? N2 3 4 -
) Of(x)
-3
—4
-5

SOLUTION: We first find that the derivative of f(x) is df/dx = (—5sinx). At
x = /2, the derivative is —5. Also f(xo) = f(7/2) = 5cos(x/2) = 0. Thus, from
Eq. (2.180), the system can be represented as f(x) = —5 dx for small excursions of x
about /2. The process is shown graphically in Figure 2.48, where the cosine curve
does indeed look like a straight line of slope —5 near /2.



Taylor series expansion

o 2 o 2
f(.?f) _ f(-xﬂ) + % (I I[}) + d f (I I[}) +

1! dx? 2!

X=Xp X=X

For small excursions of x from x0, we can neglect higher-
order terms.




Example

Linearize the following for small excursions about x = /4.

2
d_x+2d_x

cosx =0
dr? dt i

SOLUTION: The presence of the term cos x makes this equation nonlinear. Since
we want to linearize the equation about x = /4, we let x = §x + 7w /4, where §x is
the small excursion about /4, and substitute x into Eq. (2.184):

2 (5547 i
! (6:; 4) + 26'(3);: 4) + cos(ﬁx + 9 =0
d ((Sx — %) Psx
dr? ~dr




Example

Finally, the term cos (6x + (r/4)) can be linearized with the truncated Taylor series.
Substituting f(x) = cos(sx + (7 /4)), f(x0) = f(r/4) = cos(/4), and (x — x¢) = 8x
into Eq. (2.182) yields

JT) _dcosx

coS (Sx + H) cos(
4 4 dx

dx = —sin (E) dx
4

=T
=3

Solving Eq. (2.188) for cos (6x + (/4)), we get

cos (ax +%) = COS (g) — sin (g) ox = \f — \fax (2.189)

Substituting Egs. (2.186), (2.187), and (2.189) into Eq. (2.185) yields the following
linearized differential equation:

d*sx désx /2 V2
F—FZ I — 5 5.1’——7 (2.190)
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