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Introduction

+ Asystem is said to undergo free vibration when it oscillates only under an initial disturbance
with no external forces.

* Figure below shows a spring-mass system that represents the simplest possible vibratory
system.

* Itis called a single-degree-of-freedom system, since one coordinate (x) is sufficient to specify
the position of the mass at any time.

» There is no external force applied to the mass; hence the motion resulting from an initial
disturbance will be free vibration.
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Introduction

* Since there is no element that causes dissipation of energy during the
motion of the mass, the amplitude of motion remains constant with time. So,
it is an undamped system.

* In actual practice, except in a vacuum, the amplitude of free vibration
diminishes gradually over time, due to the resistance offered by the
surrounding medium (such as air).

* Such vibrations are said to be damped.
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Introduction

» Several mechanical and structural
systems can be idealized as single-
degree-of-freedom systems.

* In many practical systems, the mass
is distributed, but for a simple
analysis, it can be approximated by a
single point mass.

« Similarly, the elasticity of the system,
which may be distributed throughout
the system, can also be idealized by a

single spring.

Introduction

Another example Rigid floor

1) (mass = m)
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Elastic columns
(mass is negligible)

(a) Building frame
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Undamped Systems — Newton’s second law

if a mass m is displaced a distance X(t) when acted upon by a resultant force F (t) in the same direction,

Newton’s second law of motion gives —
— d dx(1)
F(r) = —
(1) di di
If the mass m is constant, this equation reduces to
- d*x(1)
F(t) = m —— = mX
dr-
where
= d*X(1)
X= 3
In the form dt

Resultant force on the mass = mass * acceleration

For a rigid body undergoing rotational motion, Newton's law gives

M(1) = J9
Undamped Systems
Then, the equation of motion has the form
F(r) = —kx = mX
’ 2—)— -‘U:l
k
}H’_l: - .;[_'_1 = ﬂ {b) Equivalent

spring-mass system
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Undamped systems — Conservation of Energy

« Asystem is said to be conservative if no energy is lost due to friction or energy-
dissipating nonelastic members.

« If no work is done on a conservative system by external forces (other than gravity or
other potential forces), then the total energy of the system remains constant.

2/23/2020

I + U = constant %(T +U) =0
T = ]E.rmé2 U = Liy?

mx + kx =0 Egj | J®
Represents a 2" order homogenous differential equation with W ‘7, o»\:\?“\\
constant coefficients. o (‘:""““

9
2nd order homogenous DE with constant coeffecients
The general solution for this type of equations has the form,
x = Cie™t + C,e™M2t
Where m, and m, are the roots of the corresponding algebraic equation.
o NN \
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Undamped Systems — Solution

Another method

11

x(1) = Ce” (2.11)

where C and s are constants to be determined. Substitution of Eq. (2.11) into Eq. (2.3)
gives
Clms* +k) =0

Since C cannot be zero, we have
ms> + k=0 (2.12)

and hence

wherei = (—1)"/% and

Undamped Systems

Which has the general solution

X(1) = Cré + Cpe ot

where C) and C; are constants. By using the identities

eF = cos ar + isin ar

Eq. (2.15) can be rewritten as

x(r) = A cos w,g + A, sin eyt

(

X ):A|:X0
#

) = wpdy = Xy (217

=10
=0

Hence A; = xpand A; = X/ w,. Thus the solution of Eq. (2.3) subject to the initial con-
ditions of Eq. (2.17) is given by

12

Xy .
x(1) = xgcos wyt + — sin wyt (2.18)
wﬂ
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Undamped Systems

X
x(1) = xgcos wyt + —sinwyt
wﬂ

This equation represents a harmonic function in time that

A1) = Acos (i~ @)

can be expressed in different forms @ ®

- V22
a i 5 X 4
A= (AT + APV = {\'ﬁ + (70) j| = amplitude
Wy

L[A o X
¢ = tan ‘(Tl) = tan ](* L ) = phase angle
Al 0@y
:

o -‘;D 2 /2 % N i(_ ~—f— Amplitude,
Ag=A=|xg+|— oL
x(1) = Agsin (wyt + dy) ©n a= {aer (2F

M) = Acos (wt— &) \en/ |
('bD = l:lllil M
%

x(1) = Acos (wyr — @)

Velocity maximum
/

(<)

13

A -
. — - . . . Iif @ ]l'” - ﬁqt
- If the spring-mass system is in a vertical position, as shown in Fig, the natural
frequency can be expressed as kby,
k 1/2 )
w, = E —_—
m m
- The spring constant k can be expressed in terms of the mass m as
W mg s \1/2 +x
k=—=— W = i W =mg
55[ 551 " SH
where J,is the static deflection (i.e. the elongation due to the weight 7 of the mass m).
Hence the natural frequency in cycles per second and the natural period are given by
1 (s)”
= 5, Thus, when the mass vibrates in a vertical direction, we can compute the natural frequency
. and the period of vibration by simply measuring the static deflection (i.e. we don t need to
S T (ﬁ) know the spring stiffness k and the mass m).
"R T\
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k g !II Ll ﬁq
The mass velocity and acceleration can be expressed as , ks,
. dx . T 0 —

) = E(I} = —wpAsin(wy — @) = wpAdcos| wyt — b + 0 ‘ m m
. d’x 3 2 +x

¥(r) = —(1) = —wyA cos(wyt — @) = wpAcos(wyt — b + ) :

dr- W =mg

x(1) = Agsin(ayt + dy)

= Z2 12
s Xp {
Apg=A=|x5+|—
iy
fox
&y = tan (ﬁ)
X0

Thus, the velocity leads the displacement by g and the acceleration
leads the displacement by 7.

15
NS -
k g 'FII Ll ﬁq
If the initial displacement is zero, kb,
: . (e}
= X0 ) I P, T —
x(1) = o, cos (w“f 2) w”sm ol m m
If the initial velocity is zero, however, the solution becomes o W = me
x(1) = Agsin (@, + oby)
X{ f}l == _xﬂ Cos Lt.l'ﬂf Ag=A= [{ﬁ, + (f)_:r:
dy = tan~! (ﬂj
Xg
16



Effect of spring mass

* In general, we neglect the spring mass in the vibration problem,
because the spring mass is relatively small than the structure mass.

» One can study the effect of spring mass by assuming the mass-spring
system shown in figure with spring constant k and spring mass m.

» Then, we can add the spring Kinetic energy (K.E.) to the K.E. of the
mass.

+ Since the displacement and velocity of the lower end of the spring are
x, x, then the displacement and velocity at distance y from the support

are (y ?) ,and (y %)

+ Then, the K.E. of a spring of length dy. o LM
dT, = - ] dy
17
Effect of spring mass
The total K.E. has the form,
T = kinetic energy of mass (T,,) + kinetic energy of spring (T;)
1 ., " my e
= E””_ + . 1-_{:5 Td_';' e
b, 1 m; .,
= ?HL\ + ETT
The total potential energy of the system is given by
U= ]:.lr\'l2
By assuming a harmonic motion
x(1) = X cos w,t
18
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Effect of spring mass

where X is the maximum displacement of the mass and e, is the natural frequency, the maximum

1 + M
m+=
3

T =
max 2
1 5
Unpax = EkX -
: —I'
x1)

By equating T, and U .. we obtain the expression for the natural frequency:

2 —b-| |-1—'< —

kinetic and potential energies can be expressed as
My 5
( : )X zw;
1

k
w, = m,
" m+ —
3

Thus the effect of the mass of the spring can be accounted for by adding one-third of its mass to the

main mass

Since the spring mass is relatively small than the structure mass, we usually neglects the spring weight.

19

Example 1 — Harmonic Response of a Water Tank
The column of the water tank shown in Fig. 2.10(a) is 300 ft high and is made of reinforced concrete
with a tubular cross section of inner diameter 8 ft and outer diameter 10 ft The tank weighs 6 X 10° b
when filled with water. By neglecting the mass of the column and assuming the Young’s modulus of
1)

reinforced concrete as 4 % 109 psi, determine the following:
the natural frequency and the natural time period of trans verse vibration of the water tank.

the vibration response of the water tank due to an initial transverse displacement of 10 in.

a.
the maximum values of the velocity and acceleration experienced by the water tank.

b.
c.

Solution: Assuming that the water tank is a point mass, the column has a uniform cross section, and
the mass of the column is negligible, the system can be modeled as a cantilever beam with a

T 777,

concentrated load (weight) at the free end as shown in Fig. 2.10(b).
()

3
The transverse deflection of the beam, 8, due to a load P is given by % where [ is the length, £
is the Young’s modulus, and /is the area moment of inertia of the beam’s cross section. The

(a)

n -
P _3EI
113

d.
stiffness of the beam (column of the tank) is given by
o

FIGURE 2.10  Elevated tank. (Photo courtesy of West Lafayette Water Company.)

20



Example 1 — Harmonic Response of a Water Tank

In the present case, [ = 3600 in, E = 4 X 108 psi.
I=Z(dd - d) = Z(120* - 96%) = 600.9554 X 10%in.*
64 ! 64
= 1545.6672 Ibfin.

and hence
3(4 % 108)(600.9554 % 10%)
k=
3600°
The natural frequency of the water tank in the transverse direction is given by

[15345.6672 x 386.4
= 0.9977 rad/sec

6 x 10°

'

(a)
FIGURE 2.10 Elevated tank. (Photo courtesy of West Lafayette Water Company.)

= [—=
TN N
The natural time period of transverse vibration of the tank is given by
2 2
=—= = 6.2977 sec
T e 0.9977 5ee

21

b, Using the initial displacement of x; = 10 in. and the initial velocity of the water tank ( %) as
zero, the harmonic response of the water tank can be expressed, using Eq. (2.23), as
x(t) = Agsin (wyt + dg)

where the amplitude of transverse displacement ( Ag) is given by
Ag = Ii;ﬁ + (
Wy

£ \2 T2
n) =xp=10in.

and the phase angle ( ¢y) by
— anl Xty _T
¢p = tan ( 0 ) 2
Thus
x(r) = 10sin (0.9977r + %) =10 cos 0.9977¢ in. (E1)
(E2)

The velocity of the water tank can be found by differentiating Eq. (E.1) as
. m
x(r) = 10(0.9977) cos (0.99771 + ?)

C.

Apw, = 10(0.9977) = 9.977 in/sec

and hence
Tax =

22
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Example 1 — Harmonic Response of a Water Tank

T

(b)

(a)
FIGURE 2.10 Elevated tank. (Photo courtesy of West Lafayette Water Company.)
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Example 1 — Harmonic Response of a Water Tank

x(1)
The acceleration of the water tank can be determined by differentiating Eq. (E2) as C"/ \ |
i(r) = ~10(0.9977)2 sin (0.99?7:‘ ‘ %) /
//
i
and hence the maximum value of acceleration is given by /
Foan = Ag(@,)? = 10(0.9977)% = 9.9540 in.fsec” /
!
1 {
T
(b)

(a)

FIGURE 2.10 Elevated tank. (Photo courtesy of West Lafayette Water Company.)

23

Example 1 — Harmonic Response of a Water Tank

1)
0 mass displacement, velocity, and acceleration vs time Py
T | T 7=
velocly m | N 1
\ acoeleration / \ /
al- . \ /
[ N
/
!
6 /
;
/
i
4 ' '/
/
!
2|~ - /
!
/
] ! /
|
|
2 |
[
4l |
8- i
. i
8- B
10 L .
0 1 2 3 4 5 6 7 8 g 10
time (sec.)
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Different interpretation of the response equation

The general solution takes the form

x(1) = le_’m“r + (_"EE:_I“"JTI By using the exponential definition 1% = ~oe qr + § 8in et
The solution will take the form

x(1) = Ajcos w,t + A, sin @t Al and A2 are obtained from the initial conditions.

X(1) = Acos (wpt — &) X(1) = Agsin (@nt + do)

A= (AZ + Az)u: =|x3+ ﬂ i = amplitude , _,('0 2 /2
! : 0 Wy P AO =A = xg + —

wﬂ
¢ = tan”! L) tan ™! %o = phase angle
Ay XoWn

— -rO"-UJr
. . . <b0=la|1](—_ )
xo and x, are the initial conditions for the displacement and velocity *o

25

Example 1 — column mass effect on the natural
frequencies

* Toinclude the column mass, we find the equivalent mass of the column at
the free end using the equivalence of kinetic energy and use a single
degree-of-freedom model to find the natural frequency of vibration.

» The column of the tank is considered as a cantilever beam fixed at one end
(ground) and carrying a mass M (water tank) at the other end.

» The static deflection of a cantilever beam under a concentrated end load is
given by

The maximum kinetic energy of the beam itself ( T, ) is given by

!
1 fm .
Tnax =5 T{_‘n‘.‘_.\’}l}zdl
0

26
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Example 1 — column mass effect on the natural

frequencies
where m is the total mass and (m/l) is the mass per unit length of the beam. Then

the velocity takes the form
2: _ _1..:!-:'

v x)

—

And
a " i
M| ¥max |7
nmx:q(wljf{gﬂi’f—lj dx

- 0

l m k'm; i3 l 33 .2

= Vinax
2 I 4% \ 35 14'[} ’ N _—
Wx) = 65(3: x) =%[?~'—x)
= ;’;"(1 X - x%)
27

Example 1 — column mass effect on the natural

If m, denotes the equivalent mass of the cantilever (water tank) at the free end, its maximum kinetic
energy can be expressed as
1
Tmax = Emcq. max
By substitute in the K.E. equation
33
M

Mea = Tap

Thus the total effective mass acting at the end of the cantilever beam is given by
ﬂn’fcﬁ =M + Mpg

F

3 T '-'-—j'_;(_-f] P

T Youx= 3gj

where M is the mass of the water tank. The natural frequency of transverse vibration of the water

k

tank is given by
& |
wy = — = |
"N Mg ¥
[ M+ —
1ap™

28

14
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Example 1 — column mass effect on the natural
frequencies

Column natural frequency versus column mass
0.055 T T T T T T T

0.03 [ N .

0.025 —— . f———— l"

0.015 1 | | I 1 | 1 1
0 0.2 0.4 06 0.8 1 1.2 14 1.6 1.8 2

29
Example 2 — Free-vibration response due to impact
A cantilever beam carries a mass M at the free end as shown in Fig. 2.11(a). A mass m falls from a },)
height & onto the mass M and adheres to it without rebounding. Determine the resulting transverse

vibration of the beam.

o A — o/ ~Cm5f 2

Young's modulus, E
Moment of inertia, /
51 oX = ﬂ/OA v /

P
3EI

z e

:>9(W/jl

= J n l - Z} % / The mass m applies an initial velocity v to the mass M.

30
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Example 2 — Free-vibration response due to impact

Sululitmﬂhen the mass m falls through a height h, it will strike the mass M with a velocity of
Vv = W2gh, where g is the acceleration due to gravity. Since the mass m adheres to M without
rebounding, the velocity of the combined mass (M + m) immediately after the impact ( xy) can be
found using the principle of conservation of momentum:

mv, = (M + m)xg

Young's modulus, E
Moment of inertia, /

3

(a) (b)

YY = static equilibrium position of M
ZZ = static equilibrium position of M + m

31

Example 2 — Free-vibration response due to impact

or

. m m -
[ LN Vgl El
*o (M +m)"” (M +m) & (ED

The static equilibrium position of the beam with the new mass (M + m) is located at a distance of
% below the static equilibrium position of the original mass (M) as shown in Fig. 2.11(c). Here k
denotes the stiffness of the cantilever beam, given by

Young's modulus, £
Moment of inertia, 1

_3EI

k P

Since free vibration of the beam with the new mass (M + m) occurs about its own static equilibrium 1 ——|
position, the initial conditions of the problem can be stated as

mg — I
X0 = - ;. W= (ﬁ)vzsn (E2)

(a) (b)

YY = static equilibrium position of M
ZZ = static equilibrium position of M + m

32

16
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Example 2 — Free-vibration response due to impact

Thus the resulting free transverse vibration of the beam can be expressed as (see Eq. (2.21)):

x(t) = Acos(wgt — )

where Young's modulus, £
Moment of inertia, I

with x and xy given by Eq. (E.2).

33

Y¥ = static equilibrium position of M
ZZ = static equilibrium position of M + m

Example 3 —Young’s Modulus from Natural

Frequency Measurement

A simply supported beam of square cross section 5 mm < 5 mm and length 1 m, carrying a mass of
2.3 kg at the middle, is found to have a natural frequency of transverse vibration of 30 rad/s. Deter-

mine the Young’s modulus of elasticity of the beam.

Solution: By neglecting the self weight of the beam, the natural frequency of transverse vibration of

the beam can be expressed as
_ &
Nom

Wy,

m = 2.3kg

(E1)

|

JLﬂ
v}

34
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Example 3 - Young s Modulus from Natural
Frequency Measurement

where
192E1
k= B

(E2)
where E is the Young’s modulus, { is the length, and [ is the area moment of inertia of the beam:

1
/= 1_1(5 X 1079)(5 % 10793 = 0.5208 % 1070 m*

Sincem = 23 ke, [ = 1.0 m, and w, = 30.0 rad/s, Egs. (E.1) and (E.2) yield

192E1
k= = mw

or

mall 2.3(30.0)%(1.0)°
1921 192(0.5208 x 107'9)

= 207.0132 % 10? N/m?

This indicates that the material of the beam is probably carbon steel.

35

Example 4 — Natural Frequency of Cockpit of a
Firetruck

The cockpit of a firetruck is located at the end of a telescoping boom, as shown in Fig. 2.12(a). The
cockpit, along with the fireman, weighs 2000 N. Find the cockpit’s natural frequency of vibration in
the vertical direction.

Data: Young’s modulus of the material: £ = 2.1 X 10" Nfm?; lengths: [} = [ = [3 = 3 m; cross-
sectional areas: A; = 20 cm?, A, = 10em?, A; = 5em?

Solution: To determine the system’s natural frequency of vibration, we find the equivalent stiffness
of the boom in the vertical direction and use a single-degree-of-freedom idealization. For this we
assume that the mass of the telescoping boom is negligible and the telescoping boom can deform
only in the axial direction (with no bending). Since the force induced at any cross section Oy Oy is
equal to the axial load applied at the end of the boom, as shown in Fig. 2.12(b), the axial stiffness of
the boom ( k) is given by

1 1 1 1

— =+ — (E1)
kp f(;,l kb: k;,_.\

18



2/23/2020

Example 4 — Natural Frequency of Cockpit of a
Firetruck

where kj, denotes the axial stiffness of the ith segment of the boom:
_ Ak
=

ke, i=1,273 (E2)

From the known data (/, = L =L =3m A} = 20 cm’, Ay = ll')cmz; A3 =35 cmz, E =E=
Ey =21 x 10" Nfm?),

(20 x 107%)(21 x 10')

ky = 3 =14 % 10" N/m
(10 % 1074 (21 x 10') )
kpy =3 =7 X10'Nim
(5 % 10721 x 10') 1
ky, = ————————— =35 x10'N/m

Thus Eq. (E1) gives
1 1 1 1 _ 1

kp 14 %107 7x107  35%107 2 %107

or

ky =2 % 107 N/m

37

Example 4 — Natural Frequency of Cockpit of a
Firetruck

The stiffness of the telescoping boom in the vertical direction, k, can be determined as
k = kycos?45° = 107 N/m
The natural frequency of vibration of the cockpit in the vertical direction is given by

[E _ [ao)(esn)

oy = \:'E = '\.| 2000 = 221.4723 rad/s

38
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Free Vibration with Viscous

Damp

Equation of motion

As stated in Section 1.9, the viscous damping force F is proportional to the velocity X or v
and can be expressed as

F = —cx (2.58)

where ¢ is the damping constant or coefficient of viscous damping and the negative sign indi-
cates that the damping force is opposite to the direction of velocity. A single-degree-of-freedom
system with a viscous damper is shown in Fig. 2.21. If x is measured from the equilibrium posi-
tion of the mass /m, the application of Newton’s law yields the equation of motion:

m¥ = —exX — kx
or
mx¥ +cx +kx =0 (2.59)
To solve Eq. (2.59), we assume a solution in the form
x(f) = Ce” (2.60)
where € and s are undetermined constants. Inserting this function into Eq. (2.59) leads to

the characteristic equation
ms?+es+k=0 (2.61)

INg

System

m

l

+x

Free-body diagram

2/23/2020
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42

Solution

the roots of which are

—c+ Ve —amk c c \? k
Sl =——(—————————— = —— ) " m (2.62)
m m

2m 2m

These roots give two solutions to Eq. (2.59):
xi(f) = Cie™ and xy(1) = Cpre™ (2.63)
Thus the general solution of Eq. (2.59) is given by a combination of the two solutions x;(r)
and x,(1):
(1) = Ce"t + Cpe™

= Clg{‘ﬁ*‘\’LﬁJz‘ﬂ-‘ + sz{‘ = VIEP-ak (2.64)

where € and C3 are arbitrary constants to be determined from the initial conditions of the
system.

Critical Damping Constant and the Damping Ratio. The critical damping ¢, is
defined as the value of the damping constant ¢ for which the radical in Eq. (2.62) becomes
zero:

Solution

or
3
Ce = Zm\)i— =2Vkm = 2mw, (2.65)
m

For any damped system, the damping ratio ¢ is defined as the ratio of the damping constant
to the critical damping constant:

{=cle. (2.66)

Using Egs. (2.66) and (2.65), we can write

c ¢ c
[ . 2.67
m e am {w, (2.67)

and hence
sa= (=0 £ VP -Na, (2.68)
Thus the solution, Eq. (2.64), can be written as

w(f) = CrelTEHVE Do 0 (~EVE Do (2.69)

The nature of the roots s; and 5, and hence the behavior of the solution, Eq. (2.69), depends
upon the magnitude of damping. It can be seen that the case { = 0 leads to the undamped
vibrations discussed in Section 2.2. Hence we assume that { # 0 and consider the follow-
ing three cases.

2/23/2020

m

U

+x

System Free-body diagram

m

Lo

+x

System Free-body diagram

mst+es +k=0

24 2Uw,s + wi =0

21



Solution

Case 1. Underdamped system ({ < 1ore < c.ore/2m < Vk/m). For this condition,
({: — 1) is negative and the roots s; and s, can be expressed as

s1=(—¢+iV1 = Do,
2= (= =iVl = P,

and the solution, Eq. (2.69), can be written in different forms:

x(1) = Crel iVt —ent 4 C#,r—;fvvlffw

:gﬁ%{QdVv&w+cfﬂVv?w}

- g'gmr{(cl + Cy)cos VI = Pt +i(Cr = C)sin V1 — é’zw"{}

System

= e_g“'"’{fl’cns V1 = Pyt + ChsinV1 — §2mn.r}

43
= Xne_-‘"“’ﬂ’sin( V1 — Pwgt + z‘b(-,)
= Xe i cos (\/1——;2@,,, - ¢) (2.70)
where (€1, C3), (X, ¢), and ( Xp, bp) are arbitrary constants to be determined from the
initial conditions.
For the initial conditions x(r = 0) = xgand X(r = 0) = Xy, C{ and C can be found:
iy +
Cl=xp and Ch= ""f&’"’“ (2.71)
V1 - o,
and hence the solution becomes
x(t) = e_f;“’v’{xﬂ cos V1 — 2wyt System
Xo + Logx, 3
+ %ﬁ”’sinw s m,,r} (2.72)
V1 = {fw,
44

2/23/2020

m

l

+x
Free-body diagram

m

l

+x
Free-body diagram
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46

Solution

The constants ( X, ¢) and ( X, ¢b,) can be expressed as

L s T
_ Vi, + 5§ + 2xgXple,

X =X, = V(Cc)? +(€H)* (2.73)
1 - 2o,
Ci V1 -2
—tan ! [EL) =gt (20 M T E
by = tan (C'z) tan ( % + oy ) (2.74)
o (G o o+ fwwxo
b = tan”! (—) = tan”! (7) (2.75)
Ci xpw, V1 — {3

The motion described by Eq. (2.72) is a damped harmonic motion of angular frequency
V1 — 2w, but because of the factor ¢ ¥, the amplitude decreases exponentially with
time, as shown in Fig. 2.22. The quantity

wg = V1 - o,

(2.76)

3
Niers

X
x(t) = e~$@ntx, cos(wgt) + w_0+ X | sin(wgt)
d

Solution

Case 2. Crirically damped system({ = l orc = c.orc/2m =
two roots 5; and s7 in Eq. (2.68) are equal:
e = _ &
5] = % = —E = —
Because of the repeated roots, the solution of Eq. (2.59) is given by [2.6]'

x(t) = (C; + Cat)e

The application of the initial conditions x(r = 0) = xgand x(r = 0) = x for this case
gives

C, = xy
Cy = Xy + w,xg (2.79)
and the solution becomes
x(t) =[xg + (dy + @xg)r]e (2.80)

It can be seen that the motion represented by Eq. (2.80) is aperiodic (i.c., nonperiodic).
Since e “* =0 as 1 — 00, the motion will eventually diminish to zero, as indicated in
Fig. 2.24.

\/k/m). In this case the

o, 2.77)

(2.78)
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m

Lo

+x

System Free-body diagram

wgq is the frequency of damped vibration. Then the response can take the form

m

U

+x

System Free-body diagram

x1)

Undamped (¢ = 0)

Overdamped (¢ 1)

Critically
~._damped ({ =1)
~

Underdamped (¢ < 1)
wgis smaller
than w,)

A critically damped system will have the smallest damping required for aperiodic
motion; hence the mass returns to the position of rest in the shortest possible time
without overshooting. The property of critical damping is used in many practical
applications. For example, large guns have dashpots with critical damping value, so
that they return to their original position after recoil in the minimum time without
vibrating. If the damping provided were more than the critical value, some delay
would be caused before the next firing.
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Solution

Case 3. Overdamped system ({ = lore > c.oref/2m > Vik/m). As \f{z -1 =0,
Eq. (2.68) shows that the roots s and s, are real and distinct and are given by

s =(-{+ V& -Da, <0
5= (=0 = V¥ —Da, <0 +x l

m

with 55 <=2 51, In this case, the solution, Eq. (2.69), can be expressed as T
System Free-body diagram
Mt) = Gl EVENunt 4 0 (- VE D (2.81)
For the initial conditions x(r = 0) = xgand ¥(r = 0) = Xy, the constants C; and C; can
be obtained: "
f
xowu({ + V2 —1) + % .
= il ) Overdamped (¢ >1) Undamped (¢ = 0)
20,V -1 Critically [Jnckeldamper]l](g’ <1)
Z is smaller
% 3> Jamped (£=1) “ihan an)
tan g
) . a t
Cy = —xp({ =V = 1) — % (2.82)
h = .
2w,V — 1
Equation (2.81) shows that the motion is aperiodic regardless of the initial conditions
imposed on the system. Since roots 5; and s, are both negative, the motion diminishes
exponentially with time, as shown in Fig. 2.24.
47
¢ Poles Step response
- :
Solution ¥ T
. s-plane
jo, P
) 0 —_— o
Wy t
kx ek Undamped
Jjo s-plane (i)
X jo1- 82
0<f<1 _—
Lo,
l X o, 1= &2 Underdamped
+x it
System Free-body diagram J olry
s-plane
0
&=1 B ]
2ol Undamped ~tw,

'
18+ Critically damped
16
14+ Jo o)
12p —Gw e, VE2-1

s-plane
Lor
08 {>1
06 f
04 Overdamped e T f
02 fow, yE2-1 Overdamped
" . L I
0 03 1 15 2 25 3 35
48
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Forced Vibration — Harmonic Excitation

Introduction

» A mechanical or structural system is said to undergo forced vibration whenever external
energy is supplied to the system during vibration.

 External energy can be supplied through either an applied force or an imposed displacement
excitation.

» The applied force or displacement excitation may be harmonic, or nonharmonic; periodic,
or nonperiodic; or random.

* The response of a system to a harmonic excitation is called harmonic response.

* The response of a dynamic system to suddenly applied nonperiodic excitations is called
transient response.

2/23/2020
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Equation of motion

If a force F(1) acts on a viscously damped spring-mass system as shown in Fig. the
equation of motion can be obtained using Newton's second law:

m¥ + ex + kx = F(1)

Which represents a 2" order, Nonhomogeneous O.D.E. with constant

coefficients that can be solved using the method of undetermined coefficients. g’f (1) Free-body dingram

The solution has two parts: a. homogenous solution (transient response), and b.
particular-integral solution (steady-state solution).

x(t) = xp + xp

51
Response of an Undamped System Under Harmonic
Force
kx €k
The homogeneous solution of this equation is given by :
x3(1) = Cycos wyt + Cysinw,t (3.4) _1
where w, = (k/m) 1/2 s the natural frequency of the system. Because the exciting force Tﬂ ) o
F(r) is harmonic, the particular solution x () is also harmonic and has the same frequency A1
w. Thus we assume a solution in the form (a) (b) Free-body diagram
x,(1) = X cos wr (3.5)
xi(f)
where X is an constant that denotes the maximum amplitude of x,(r). By substituting o DA A AL
Eq. (3.5) into Eq. (3.3) and solving for X, we obtain !
F, B =0
X=—20_= - (3.6) o JANIVAN
Eomt (w) \VARVAR VARV
Wy
) = x(0) + x D) .
o M‘v}% S -
52
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Response of an Undamped System Under Harmonic
Force

The maximum amplitude X in Eq. (3.6) can be expressed as

This relation is called the magnification factor, amplification
factor, or amplitude ratio. The variation of this ration with the
frequency ration is shown in Figure. -

Based on the figure the system can be classified into three types. -2

53

Response of an Undamped System Under Harmonic

Force
Hr)y= F,cos wl
Fy
Case 1. When 0 < wﬂ < 1 the denominator in the equation is positive 0 \\/m\“”
n T
and the response is given by the equation,
x 1) = Xcos wt

xplt) = X cos wt X

The harmonic response of the system is said to be in phase with the external force
as shown in Fig.

54
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Response of an Undamped System Under Harmonic

Force

Case 2. When - > 1 the denominator in the equation is negative and

wWn

the steady state solution can be expressed as,

x(t) = —X cos wt
where the amplitude of motion X is redefined to be a positive quantity as

Bst
@ 2
=] -1
wll

The response is said to be 180° out of phase with the external force. As
= - 00,X - 0. i.e. the system response to a force with very high

wWn

frequency is close to zero.

X =

55

Hi)= Fycos ot

Fy

NN N\

2m N

x 1) = — X cos wt

Response of an Undamped System Under Harmonic

Force

Case 3. When wﬂ = 1 the amplitude X becomes infinite.

n

xd1)

This condition, for which the forcing frequency is equal to the natural
frequency of the system is called resonance. To find the response for this
condition,

Xy . COS wI — COS w,!
x(1) = xgcos wyt + —sinw,t + 8y

W, ® 2
l —_ R
w!l’

56

28



2/23/2020

Response of an Undamped System Under Harmonic
Force

Since the last term of this equation takes an indefinite form for w = w,, we apply L'Hos-
pital’s rule [3.1] to evaluate the limit of this term:
xdr) -

d .
—(cos wt — cos w,t) -
COS wl — COS wy! dew

lim | ———————— | = lim > Py \
o=y w \? @y d w® L
1 —|— —{1 - —
w, L dw w? o TN 1
r -— = 2m ---“'*-.
. 1 sin wr . “
= lim = Sin w,! .

_ wy! 'n

E
|
g
|e

2
L w

(=]

1

Thus the response of the system at resonance becomes

Xy Ol
x(1) = xgcos wyt + —rsinw,yt + —sin w,t
w, 2

57
Response of an Undamped System Under Harmonic
Force —
™ VAN
x(1) = Acos(wy — @) + L}cos wl; formin <1 \/
b (“TR) xft) = — Xcos wt
x(t) = Acos (wt — ) — Lﬁ)gcos wt; forwin =] /_\ ,
-+ (2) i =)
. Wl - -
x(1) = xgcos w,t + 20 in w,t + 89[:)"" sinw, for a)ﬂ =1 T /\
0 \ﬁ/\v/\\/ ;
58
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Example 5 — Forced response

a. Derive an expression for the displacement response, z, when a step
force of magnitude P is applied to the single-DOF system shown in Fig.

Assume that the damping is less than critical, and that the initial
conditionsarez=z=0att=0.

b. Plot the displacement, z, in non-dimensional form, as a multiple of the
static displacement for the same load, z; = P/k, with the non-dimensional
viscous damping coefficient, €, equal to 0.1, and the undamped natural
frequency,w,,, equal to 10 rad/s.

59

Example 5 — Forced response

Part (a):
In this case the equation to be solved is

mi4ci+kz=P
In the standard form
i} .., P
Z4 28wz + whz = m
Since ¢ < 1, the complementary solution will take the form
z = e~$9nt(4 cos(wyt) + B sin(wgt))
For the particular-integral solution, assume z = C, and by substitute in the D.E.

_ P

mw?

Then,

P
z = e $9nt(4 cos(wgt) + B sin(wgt)) + —
mw

n

60
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kz cz

Free body diagram

Spring
k

Free body diagram
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Example 5 — Forced response

2/23/2020

The constants A and B, can be obtained from the initial conditions z(0) = 0,2z(0) = 0.

L__ P __P
T mow? k
B = Pw, P¢
mwiwg k1 &2

Then the general solution will be

P
z= [1 — e~Swnt (cos(wdt) +

\/1€—§Zsm(wdt)>]

61
Example 5 — Forced response
Part (b): divided by the static displacement z; = %
Z_ 1 — e $@nt| cos(wyt) + Lsin(w t)
Z d T-¢ d
Which is plotted herein for £ = 0.1, w,, = 10
2
1.8+
16+ /\
1.4+ .-"f \ /
12p \ _
Noab pr ol pe i Nz e Ya
0.6 ’, \/ t(sec.)
041 /
02t/
1]
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kz cz

Free body diagram

Spring Damper
k c

Ij kz cz

Free body diagram

It is seen that the displacement approaches
twice the static value, before settling at the
static value.
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Forced response — Exercise

Solve example 5 again with applied force F = P sin(wt)

In this case the particular integral solution will take the form

z = C cos wt + Dsin(wt) sprng Damper

L

And plot the magnitude of z, k2l - VC? + D? as a function of the nondimensional

|
Zs

w
frequency Q = o

2/23/2020

kz cz

Free body diagram
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Forced response — Exercise
z TF
50 |! v=0.02 L
||| "
" 1 i'I||[,—.:0.03
N I
= I
/I."I K».:o 05 {
ey/An 7=0. k ;:; c
0. {_'__-.-:.
2 25 3
W
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Frequency Response Function (FRF)

The response (displacement, velocity or acceleration) divided by the input force.

Names of Frequency Response Functions

Standard FRFs Inverse FRFs

z/F Receptance, Admittance, Dynamic Compliance, F/z Dynamic stilfness
or Dynamic Flexibility.

zfF Mobility Fiz Impedance

Z/F Inertance or Accelerance F/z Apparent mass

Aerospace Application
Dynamic instability of an airfoil — Flutter

Find the value of free-stream velocity u at which the airfoil section (single-degree-
of-freedom system) shown in Fig. becomes unstable.

Approach: Find the vertical force acting on the airfoil (or mass m) and obtain the condition that leads to zero
damping.

| Blade
rstiffness and .
) damping x

2/23/2020
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f
Aerospace Application = (R

Dynamic instability of an airfoil EWL e [T

The vertical force acting on the airfoil (or mass m) due to fluid flow can be expressed as Cy

CL

1
Fzzpu c Cy

The vertical force acting on the airfoil (or mass m) due to fluid flow can be expressed as
R S T
F= :P-H D(‘.r

where p = density of the fluid, ¥ = free-stream velocity, D = width of the cross section normal to
the fluid flow direction, and C, = vertical force coefficient, which can be expressed as

C,=Cpcosa + Cpsina

67

Aerospace Application
Dynamic instability of an airfoil

—

T
/ 2

For small angles of attack, | =

_ | Blade
i c +stiffness and .
= —— 1
. | damping — Ure)
I
7

Then the equation of motion takes the form

x
CX:CL—I—CDa:CL_CDa
oL 1 . x
mx+cx+kx=5puc CL—CDE
68
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Aerospace Application
Dynamic instability of an airfoil

Which can be

) 1, Cp). 1,
mi +c c+5pu 67 x+kx=5pu cCy

The wing (mass) will become unstable at zero damping,

1 C —2c
c+§pu25?D= 0 =u

" pCp

t stiffness and
| damping
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