
2/23/2020

1

Dynamics of Structures
SDOF Systems

Mohamed Abdou Mahran Kasem, Ph.D.

Aerospace Engineering Department

Cairo University

Free Vibration

1

2



2/23/2020

2

Introduction

• A system is said to undergo free vibration when it oscillates only under an initial disturbance 
with no external forces.

• Figure below shows a spring-mass system that represents the simplest possible vibratory 
system. 

• It is called a single-degree-of-freedom system, since one coordinate (x) is sufficient to specify 
the position of the mass at any time. 

• There is no external force applied to the mass; hence the motion resulting from an initial 
disturbance will be free vibration.

Introduction

• Since there is no element that causes dissipation of energy during the 
motion of the mass, the amplitude of motion remains constant with time. So, 
it is an undamped system. 

• In actual practice, except in a vacuum, the amplitude of free vibration 
diminishes gradually over time, due to the resistance offered by the 
surrounding medium (such as air). 

• Such vibrations are said to be damped.
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Introduction

• Several mechanical and structural
systems can be idealized as single-
degree-of-freedom systems.

• In many practical systems, the mass
is distributed, but for a simple
analysis, it can be approximated by a
single point mass.

• Similarly, the elasticity of the system,
which may be distributed throughout
the system, can also be idealized by a
single spring.

Introduction

Another example
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Undamped Systems – Newton’s second law  
if a mass m is displaced a distance Ԧ𝑥(𝑡) when acted upon by a resultant force Ԧ𝐹(𝑡) in the same direction, 

Newton’s second law of motion gives

If the mass m is constant, this equation reduces to

In the form

Then, the equation of motion has the form

Undamped Systems
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Undamped systems – Conservation of Energy 

• A system is said to be conservative if no energy is lost due to friction or energy-

dissipating nonelastic members.

• If no work is done on a conservative system by external forces (other than gravity or 

other potential forces), then the total energy of the system remains constant.

Represents a 2nd order homogenous differential equation with 

constant coefficients.

2nd order homogenous DE with constant coeffecients

The general solution for this type of equations has the form,

𝑥 = 𝐶1𝑒
𝑚1𝑡 + 𝐶2𝑒

𝑚2𝑡

Where 𝑚1 and 𝑚2 are the roots of the corresponding algebraic equation.
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Undamped Systems – Solution

Another method

Undamped Systems 

Which has the general solution
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Undamped Systems

This equation represents a harmonic function in time that 

can be expressed in different forms

Comments

- If the spring-mass system is in a vertical position, as shown in Fig, the natural 

frequency can be expressed as

- The spring constant k can be expressed in terms of the mass m as

Hence the natural frequency in cycles per second and the natural period are given by

where 𝛿𝑠𝑡is the static deflection (i.e. the elongation due to the weight W of the mass m).

Thus, when the mass vibrates in a vertical direction, we can compute the natural frequency

and the period of vibration by simply measuring the static deflection (i.e. we don t need to 

know the spring stiffness k and the mass m).
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Comments

The mass velocity and acceleration can be expressed as , 

Thus, the velocity leads the displacement by 
𝜋

2
and the acceleration 

leads the displacement by 𝜋.

Comments

If the initial displacement is zero, 

If the initial velocity is zero, however, the solution becomes
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Effect of spring mass

• In general, we neglect the spring mass in the vibration problem,

because the spring mass is relatively small than the structure mass.

• One can study the effect of spring mass by assuming the mass-spring

system shown in figure with spring constant k and spring mass 𝑚𝑠.

• Then, we can add the spring kinetic energy (K.E.) to the K.E. of the

mass.

• Since the displacement and velocity of the lower end of the spring are

𝑥, ሶ𝑥, then the displacement and velocity at distance y from the support

are 𝑦
𝑥

𝑙
, 𝑎𝑛𝑑 𝑦

ሶ𝑥

𝑙
.

• Then, the K.E. of a spring of length dy.

Effect of spring mass

The total K.E. has the form,
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Effect of spring mass

Since the spring mass is relatively small than the structure mass, we usually neglects the spring weight. 

Example 1 – Harmonic Response of a Water Tank 
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Example 1 – Harmonic Response of a Water Tank 

Example 1 – Harmonic Response of a Water Tank 
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Example 1 – Harmonic Response of a Water Tank 

Example 1 – Harmonic Response of a Water Tank 

System response 
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Different interpretation of the response equation

The general solution takes the form

By using the exponential definition

The solution will take the form

A1 and A2 are obtained from the initial conditions.

𝑥0 𝑎𝑛𝑑 ሶ𝑥0 are the initial conditions for the displacement and velocity

Example 1 – column mass effect on the natural 
frequencies

• To include the column mass, we find the equivalent mass of the column at 

the free end using the equivalence of kinetic energy and use a single 

degree-of-freedom model to find the natural frequency of vibration. 

• The column of the tank is considered as a cantilever beam fixed at one end 

(ground) and carrying a mass M (water tank) at the other end.

• The static deflection of a cantilever beam under a concentrated end load is 

given by
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Example 1 – column mass effect on the natural 
frequencies

where m is the total mass and (m/l) is the mass per unit length of the beam. Then 

the velocity takes the form,

And 

Example 1 – column mass effect on the natural 
frequencies

By substitute in the K.E. equation, 
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Example 1 – column mass effect on the natural 
frequencies

Example 2 – Free-vibration response due to impact

The mass m applies an initial velocity v to the mass M. 
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Example 2 – Free-vibration response due to impact

Example 2 – Free-vibration response due to impact
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Example 2 – Free-vibration response due to impact

Example 3 – Young’s Modulus from Natural 
Frequency Measurement

m = 2.3 kg

A B

Z

X

L = 1m
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Example 3 – Young s Modulus from Natural 
Frequency Measurement

Example 4 – Natural Frequency of Cockpit of a 
Firetruck
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Example 4 – Natural Frequency of Cockpit of a 
Firetruck

Example 4 – Natural Frequency of Cockpit of a 
Firetruck
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Free Vibration with Viscous 
Damping

Equation of motion
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Solution

Solution
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Solution

Solution
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Solution

𝜔𝑑 is the frequency of damped vibration. Then the response can take the form 

𝑥 𝑡 = 𝑒−𝜉𝜔𝑛𝑡 𝑥0 cos 𝜔𝑑𝑡 +
ሶ𝑥0

𝜔𝑑
+

𝜉

1 − 𝜉2
𝑥0 sin 𝜔𝑑𝑡

Solution
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Solution

Solution
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Forced Vibration – Harmonic Excitation

Introduction

• A mechanical or structural system is said to undergo forced vibration whenever external 
energy is supplied to the system during vibration.

• External energy can be supplied through either an applied force or an imposed displacement 
excitation. 

• The applied force or displacement excitation may be harmonic, or nonharmonic; periodic, 
or  nonperiodic; or random. 

• The response of a system to a harmonic excitation is called harmonic response.

• The response of a dynamic system to suddenly applied nonperiodic excitations is called 
transient response.
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Equation of motion

Which represents a 2nd order, Nonhomogeneous O.D.E. with constant 

coefficients that can be solved using the method of undetermined coefficients.  

The solution has two parts: a. homogenous solution (transient response), and b. 

particular-integral solution (steady-state solution).

𝑥 𝑡 = 𝑥ℎ + 𝑥𝑝

Response of an Undamped System Under Harmonic 
Force
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Response of an Undamped System Under Harmonic 
Force

This relation is called the magnification factor, amplification 

factor, or amplitude ratio. The variation of this ration with the 

frequency ration is shown in Figure.

Based on the figure the system can be classified into three types. 

Response of an Undamped System Under Harmonic 
Force

Case 1. When 0 <
𝜔

𝜔𝑛
< 1 the denominator in the equation is positive 

and the response is given by the equation, 

The harmonic response of the system is said to be in phase with the external force 

as shown in Fig.
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Response of an Undamped System Under Harmonic 
Force

Case 2. When 
𝜔

𝜔𝑛
> 1 the denominator in the equation is negative and 

the steady state solution can be expressed as, 

The response is said to be 180𝑜 out of phase with the external force. As 
𝜔

𝜔𝑛
→ ∞,𝑋 → 0. i.e. the system response to a force with very high 

frequency is close to zero. 

Response of an Undamped System Under Harmonic 
Force

Case 3. When 
𝜔

𝜔𝑛
= 1 the amplitude X becomes infinite. 

This condition, for which the forcing frequency is equal to the natural 

frequency of the system is called resonance. To find the response for this 

condition, 
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Response of an Undamped System Under Harmonic 
Force

Response of an Undamped System Under Harmonic 
Force

for
𝜔

𝜔𝑛
= 1

57

58



2/23/2020

30

Example 5 – Forced response

a. Derive an expression for the displacement response, z, when a step

force of magnitude P is applied to the single-DOF system shown in Fig.

Assume that the damping is less than critical, and that the initial

conditions are 𝑧 = ሶ𝑧 = 0 at t = 0.

b. Plot the displacement, z, in non-dimensional form, as a multiple of the

static displacement for the same load, 𝑧𝑠 = 𝑃/𝑘, with the non-dimensional

viscous damping coefficient, ξ, equal to 0.1, and the undamped natural

frequency,𝜔𝑛, equal to 10 rad/s.

Example 5 – Forced response

ሷ𝑧 + 2𝜉𝜔𝑛 ሶ𝑧 + 𝜔𝑛
2𝑧 =

𝑃

𝑚

In the standard form

Since 𝜉 < 1, the complementary solution will take the form 

𝑧 = 𝑒−𝜉𝜔𝑛𝑡 𝐴 cos 𝜔𝑑𝑡 + 𝐵 sin 𝜔𝑑𝑡

For the particular-integral solution, assume z = C, and by substitute in the D.E.

𝐶 =
𝑃

𝑚𝜔𝑛
2

Then, 

𝑧 = 𝑒−𝜉𝜔𝑛𝑡 𝐴 cos 𝜔𝑑𝑡 + 𝐵 sin 𝜔𝑑𝑡 +
𝑃

𝑚𝜔𝑛
2
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Example 5 – Forced response

The constants A and B, can be obtained from the initial conditions 𝑧 0 = 0, ሶ𝑧 0 = 0.

𝐴 = −
𝑃

𝑚𝜔𝑛
2 = −

𝑃

𝑘

𝐵 = −
𝑃𝜉𝜔𝑛

𝑚𝜔𝑛
2𝜔𝑑

= −
𝑃𝜉

𝑘 1 − 𝜉2

Then the general solution will be

𝑧 =
𝑃

𝑘
1 − 𝑒−𝜉𝜔𝑛𝑡 cos 𝜔𝑑𝑡 +

𝜉

1 − 𝜉2
sin 𝜔𝑑𝑡

Example 5 – Forced response

Part (b): divided by the static displacement 𝑧𝑠 =
𝑃

𝑘

𝑧

𝑧𝑠
= 1 − 𝑒−𝜉𝜔𝑛𝑡 cos 𝜔𝑑𝑡 +

𝜉

1 − 𝜉2
sin 𝜔𝑑𝑡

Which is plotted herein for 𝜉 = 0.1, 𝜔𝑛 = 10

It is seen that the displacement approaches 

twice the static value, before settling at the 

static value.
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Forced response – Exercise 

Solve example 5 again with applied force 𝐹 = 𝑃 𝑠𝑖𝑛 𝜔𝑡

In this case the particular integral solution will take the form

𝑧 = 𝐶 cos𝜔𝑡 + 𝐷𝑠𝑖𝑛 𝜔𝑡

And plot the magnitude of z , 
𝑧

𝑧𝑠
= 𝐶2 + 𝐷2 as a function of the nondimensional 

frequency Ω =
𝜔

𝜔𝑛

Forced response – Exercise 
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Frequency Response Function (FRF) 

The response (displacement, velocity or acceleration) divided by the input force.

Aerospace Application
Dynamic instability of an airfoil – Flutter 

Find the value of free-stream velocity u at which the airfoil section (single-degree-

of-freedom system) shown in Fig. becomes unstable.

Approach: Find the vertical force acting on the airfoil (or mass m) and obtain the condition that leads to zero 

damping.
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Aerospace Application
Dynamic instability of an airfoil

The vertical force acting on the airfoil (or mass m) due to fluid flow can be expressed as

𝐹 =
1

2
𝜌𝑢2 ҧ𝑐 𝐶𝑥

𝛼
𝐶𝐷

𝐶𝐿

𝛼

𝐶𝑥

Aerospace Application
Dynamic instability of an airfoil

𝐶𝑥 = 𝐶𝐿 + 𝐶𝐷𝛼 = 𝐶𝐿 − 𝐶𝐷
ሶ𝑥

𝑢

Then the equation of motion takes the form

𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 =
1

2
𝜌𝑢2 ҧ𝑐 𝐶𝐿 − 𝐶𝐷

ሶ𝑥

𝑢
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Aerospace Application
Dynamic instability of an airfoil

Which can be 

𝑚 ሷ𝑥 + 𝑐 𝑐 +
1

2
𝜌𝑢2 ҧ𝑐

𝐶𝐷
𝑢

ሶ𝑥 + 𝑘𝑥 =
1

2
𝜌𝑢2 ҧ𝑐 𝐶𝐿

The wing (mass) will become unstable at zero damping,

𝑐 +
1

2
𝜌𝑢2 ҧ𝑐

𝐶𝐷
𝑢

= 0 ⇒ 𝑢 =
−2𝑐

𝜌 ҧ𝑐𝐶𝐷
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