Airframe Design and Construction

Section properties - revision

Instructor: Mohamed Abdou Mahran Kasem, Ph.D.

Aerospace Engineering Department

Cairo University

First Moment of area

Consider an area A located in the xy plane (Fig. A.1). Denoting by x and y the coordinates of an element of area dA, we define the first moment of the area A with respect to the x axis as the integral

$$Q_x = \int_A y \, dA$$

Similarly, the first moment of the area A with respect to the y axis is defined as the integral

$$Q_{y} = \int_{A} x \, dA$$

First moment of area units is $[m^3]$ in SI system and $[in^3 \ orft^3]$ in U.S system.

Centroid of an area

The centroid of the area A is defined as the point C of coordinates \bar{x} and \bar{y} (Fig. A.2), which satisfy the relations

$$\int_{A} x \, dA = A\bar{x} \qquad \int_{A} y \, dA = A\bar{y}$$

Then the centroid position can be calculated from the relation

$$\bar{x} = \frac{\int x \, dA}{A} = \frac{\sum_{i=1}^{N} x_i A_i}{\sum_{i=1}^{N} A_i} \qquad \bar{y} = \frac{\int y \, dA}{A} = \frac{\sum_{i=1}^{N} y_i A_i}{\sum_{i=1}^{N} A_i}$$

Symmetric sections

If an area A Possesses an axis of symmetry, its centroid C is located on that axis. Because the first moment of area will vanish (i.e. $Q_x = 0$, $or Q_v = 0$).

And if an area possesses a center of symmetry O, the first moment of area about any axis through O is zero.

Symmetric sections

If the centroid is located by symmetry, then the first moment of area with respect to any axis can directly be obtained using the relations.

$$Q_x = A\bar{y} = (bh)(\frac{1}{2}h) = \frac{1}{2}bh^2$$

$$Q_v = A\bar{x} = (bh)(\frac{1}{2}b) = \frac{1}{2}b^2h$$

Example 1 - T section

Selecting the coordinate axes shown in Fig. A.11, we note that the centroid C must be located on the y axis, since this axis is an axis of symmetry; thus, $\overline{X} = 0$.

Dividing A into its component parts A_1 and A_2 , we use the second of Eqs. (A.6) to determine the ordinate \overline{Y} of the centroid. The actual computation is best carried out in tabular form.

$ \begin{array}{ccccccccccccccccccccccccccccccccccc$
$\sum A_i \overline{y}_i = 184 \times 10^3$

$$\overline{Y} = \frac{\sum_{i} A_{i} \overline{y}_{i}}{\sum_{i} A_{i}} = \frac{184 \times 10^{3} \text{ mm}^{3}}{4 \times 10^{3} \text{ mm}^{2}} = 46 \text{ mm}$$

Example 1 - T section

The first moment of area can be calculated w.r.t. the axis x'

$$Q'_{x'} = A_1 \bar{y}'_1 + A_3 \bar{y}'_3$$

= $(20 \times 80)(24) + (14 \times 40)(7) = 42.3 \times 10^3 \,\mathrm{mm}^3$

Second moment of area

The second moments of area (moment of inertia) of A with respect to x-axis and y-axis are

$$I_{x} = \int_{A} y^{2} dA \qquad I_{y} = \int_{A} x^{2} dA$$

Example 2 – rectangular section

Determine the moment of inertia around the x-axis for the given rectangular section?

$$dI_x = y^2 dA = y^2 (b dy)$$

Integrating from y = -h/2 to y = +h/2, we write

$$I_x = \int_A y^2 dA = \int_{-h/2}^{+h/2} y^2(b dy) = \frac{1}{3}b[y^3]_{-h/2}^{+h/2}$$

$$= \frac{1}{3}b\left(\frac{h^3}{8} + \frac{h^3}{8}\right)$$

OI

$$I_x = \frac{1}{12}bh^3$$

Parallel-axis theorem

Consider the moment of inertia I_x of an area A with respect to an arbitrary x axis (Fig. A.20). Denoting by y the distance from an element of area dA to that axis, we recall from Sec. A.3 that

$$I_x = \int_A y^2 dA$$

Let us now draw the *centroidal* x' axis, i.e., the axis parallel to the x axis which passes through the centroid C of the area. Denoting by y' the distance from the element dA to that axis, we write y = y' + d, where d is the distance between the two axes. Substituting for y in the integral representing I_x , we write

$$I_{x} = \int_{A} y^{2} dA = \int_{A} (y' + d)^{2} dA$$

$$I_{x} = \int_{A} y'^{2} dA + 2d \int_{A} y' dA + d^{2} \int_{A} dA$$

$$I_x = \bar{I}_{x'} + Ad^2$$

Example 3 - T section

Rectangular Area A₁.

$$(\bar{I}_{x'})_1 = \frac{1}{12}bh^3 = \frac{1}{12}(80 \text{ mm})(20 \text{ mm})^3 = 53.3 \times 10^3 \text{ mm}^4$$

$$(I_x)_1 = (\bar{I}_{x'})_1 + A_1 d_1^2 = 53.3 \times 10^3 + (80 \times 20)(24)^2$$

= 975 × 10³ mm⁴

Rectangular Area A2.

$$(\bar{I}_{x''})_2 = \frac{1}{12}bh^3 = \frac{1}{12}(40)(60)^3 = 720 \times 10^3 \text{ mm}^4$$

 $(\bar{I}_x)_2 = (\bar{I}_{x''})_2 + A_2d_2^2 = 720 \times 10^3 + (40 \times 60)(16)^2$
 $= 1334 \times 10^3 \text{ mm}^4$

Entire Area A.

$$\bar{I}_x = (I_x)_1 + (I_x)_2 = 975 \times 10^3 + 1334 \times 10^3$$

 $\bar{I}_x = 2.31 \times 10^6 \,\text{mm}^4$

Wing section properties

1	2	3	4	5	6	7	8
Stringer Number	P 11174	Stringer Effect- iveness Factor	Effect- ive Area (A)	z'	Azʻ	z=2'-z	Az²
1	0.37	1.0	0.370	4.50	1.664	5. 47	11.05
2	0.185	0.808	0.149	4.60	0.685	5. 57	4.62
3	0.185	0.808	0.149	4.60	0.685	5. 57	4.62
4	0. 185	0.808	0.149	4.60	0,685	5.57	4.62
5	0.370	1.0	0.370	4.50	1.664	5. 47	11.05
6	0.417	1.0	0.417	-4,60	-1.920	-3. 63	5.50
7	0.320	1.0	0.320	-4.63	-1.480	-3.66	4.28
8	0.320	1.0	0.320	-4.63	-1.480	-3.66	4.28
9	0.320	1.0	0.320	-4.63	-1.480	-3.66	4.28
10	0. 417	1.0	0.417	-4.63	-1.920	-3.63	5.50
		Σ	2.981		-2.897	I _X =	59.80

z' = distance from & x axis to centroid of stringer area

 $\bar{z} = \sum Az' / \sum A = -2.897/2.981 = -.97 in.$

