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First Moment of area

Consider an arca A located in the xy plane (Fig. A.l1). Denoting by x
and y the coordinates of an element of area dA, we define the first mo-

ment of the area A with respect to the x axis as the integral 4
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Similarly, the first moment of the area A with respect 1o the v axis is |

defined as the integral
0= J x dA
A

First moment of area units is [m3] in SI system and [in3 orft3] in U.S system.



Centroid of an area

The centroid of the area A 1s delined as the point C of coordinates
x and y (Fig. A.2), which sausfy the relations
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Then the centroid position can be calculated from the relation
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Symmetric sections

If an area A Possesses an axis of symmetry, its centroid C is located on
that axis. Because the first moment of area will vanish (i.e. @, =
0,0rQ, = 0).

And If an area possesses a center of symmetry O, the first moment of
area about any axis through O is zero.
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Symmetric sections

If the centroid Is located by symmetry, then the
first moment of area with respect to any axis can
directly be obtained using the relations.
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Ay = (bh)(3h) = sbh*

0, = Ax = (bh)(3b) = 3b°h
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Example 1 — T section
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Selecting the coordinate axes shown in Fig. A .11, w2 note *C
that the centroid " must be located on the y axis, since this i
axis 1s an axis of symmetry: thus, X = 0. F
- . . - . |
Dividing A into its component parts A, and 4, we use the
second of Eqs. (A6} 1o determine the ordinate Y of the T R 0
centroid, The actual computation is best camied out in tabular Dimensions in mm
form.
Area, mm~ Ve mm Ay . mm?® j
A, (20)(80) = 1600 70 112 < 10° ‘
A, (40)(60) — 2400 30 F29¢ 10°
> A, = 4000 > Ay, = 184 x 10° =T g
1 | B

S As -
= ; o 184 > 10° 3 |
= = = Y — 46 mm 40—

2 A. 4 > 107 mm-~ Dimensions innim




Example 1 — T section

The first moment of area can be calculated w.r.t.
the axis x”’

Q= A + Aa);
= (20 % 80)(24) + (14 X 40)[7) = 42.3 X 10° mm’
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Second moment of area

The second moments of area (moment
of Inertia)of A with respect to x-axis
and y-axis are

I = J;ﬁ dA I = J x° dA
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Example 2 — rectangular section

Determine the moment of Inertia
around the x-axis for the given
rectangular section?

di, = v dA = v{b dy)

[ntegrating from v = —h/2 to v = +h/2, we write
| ’113"_,

2 2 lar. 39402

[, = ’ Vv dA = [ yi(bdy) =sbly |15
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Parallel-axis theorem

Consider the moment of inertia /, of an area A with respect to an arbi-
trary x axis (Fig. A.20). Denoting by y the distance from an element of
area dA to that axis, we recall from Sec. A.3 that

l. = J_\‘z dA
A

Let us now draw the centroidal x' axis, 1.¢., the axis parallel to the x
axis which passes through the centroid C ol the area. Denoting by V'
the distance from the element dA to that axis, we write v = v' + d,
where d is the distance between the two axes. Substituting for y in the
mtegral representing 4, we write

ol =

I = Jf dA = J{;-' + d) dA
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Example 3 — T section

Rectangular Area A,.

(1) = 5bh° = 580 mm)(20 mm)’ = 533 = 10° mm*

(I = (L) + Adi = 533 % 107 + (80 % 20)(24)
= 975 % 10" mm*

Rectangular Area A,.

(Ie)2 = isbh’ = 5(40)(60) = 720 % 10’ mm*
(L) = (1), + Asdi = 720 X 10° + (40 X 60)(16)*
= 1334 x 10 mm®

Entire Area A.

I, = (1), + (1): = 975 x 10> + 1334 3 10°
I =231 % 10° mm®
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Airplane moments of Inertia

To determine the airplane inertia forces and
subsequently calculate the airplane stresses, it Is

Important to determine the airplane moment of
Inertia.

The mess moments of inertla of the alrplane
about the coordinate X, Y and 2 axes through the
center of gravity of the alrplane can hbe eXpres-
sad as follows:

I, = Zwy= + Zwza® + ZAL,
Iy = ZWX® + Zwz® + ZAly

Iz = Zwx® + Iwy*® + ZAl;

where Iy, Iy, &nd Iy &re generally referred to

as the rolling, pitching and yawing moments of
inertia of the alrplane.

w = weight of the 1tems in tThe alirplane

X, ¥y and z equal the dlstances from the
axes thru the center of gravity of the alrplane
and the welghts w. The last term in each equa-
tion i1s the summation of the moments of lnertia
of the variocus items about thelr own X, Y and 2
centroidal axes.



Example 6 — Airplane moment of Inertia

Determine the gross welght

center of gravity of the alrplane shown 1in Fig.
AZ.3. The airplans welght has been broken down

into the 10 items or welght groups, with thelr

individual c.g. locatlons denoted by the symbol
+

. "E
Fig. A3.3
Ref, line



Example 6 — Centroid

Solution. The alrplane center of gravity will be
located with respect to two rectangular axes. In
this example, & vertlical axis thru the center-
1line of the propeller will be selected as a ref-
erence axis for horizontal distances, and the
thrust line as a reference axis for vertical dis-
tances. The general expresslions to be soclved
are:-

X = Iwx = distance to airplane c.g. from
2w ref, axis -8

y = 2WYy = distance to airplane c.g. from
W ref. axis X-X



Example 6 — Airplane Centroid

Item Horizontal Yertical
Weight | Arm= x| Noment | Arm= ¥ | Momont
No., Name LE = Wx = ¥y
1 Propeller 180 0 in 0 i ] 4]
2 Engipne Group B20 46 37720 0 0
3 Fuselage Group 800 182 145600 4 3200
4 Wing Group 600 158 94800 -18 -10800
5 Hori., Tail &0 296 17760 8 480
6 Vvert, Tail 40 335 13400 26 1040 ®
7 Tail Wheel S0 328 16400 =20 =1000 *
8 Front Land.Gear 300 115 34500 =30 - 800 Thrust ¥
8 Pilot 200 165 33000 10 2000 line @
10 Radio 100 240 24000 5 500
Totals 3150 417180 ~5480 @ Fig. A3.3
Ref, line
X = 417180 = 133.3" aft of £ propeller

3150

5480 = -1.74" (below thrust line)
2150

=l
il



Example 7 — Airplane moment of inertia

Z boay axis P -~
l’ AT ‘
— = ] [ —F”P . RH“&
1, = ZWx® + Iwz® + ZAly = 26,691,505 + 999,035 + e L 20 Ty
3,120,384 = 30,804,014 1b. ing ox L TLN
p'l.l.hl'__-' .
= Iwy? + Zwz® + SAly = 10,287,522 + 992,023 + Yo T
2,089,470 = 14,175,087 1b. In.® L.x"'f' ’ P
Thrust - - - . e ! ’_1,;"
— _ — Hoe i ;. - .H:KH Y Boly wxls
= Wy ® + Zwz® + BAL, = 10,287,522 + 26,691,595 + A E L
5,15?1 lBE' ~ 42, IEEJE{]E lh. i.ﬂ.a E'Sn!'u:cu.crun"l-*-f_ ___,-"'J.#
: -
nr H-l.fu:rl.ﬂ.:-: ]
ATin = - J..-T' Refaremce
=" mxis
e
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.
Item Welght | = ¥ 4 wx wE wx® wy? we? ﬂI: ﬂI? Alg wXE
center sectlon 1088|102 - | 57 11,088 6,302 1,131,955 - 353,451 261,239 - 261, 229 632,563
nosae agsasbly
Center sectlion 204 .8 121 - &7 24,757| 11,882| 2,995,549 - &664, 745 491,245 - 491,245 1,411,136
bean, eto.
Center section 84.2|148 = 55 12, 462 4,831 | 1,844,317 - a54 , 705 ac3, 164 33,680 235,844 885, 388
Tiba, eto.
Flap 2E.0|180 - | 83 3,860 1,188 712,800 - 61,798 48,598 - 48,598 209, 880
Quter panel nose| 104. 61105 166 | &5 10,983 8,799 1,153,215| 2,545,546 411,935 184,514 - 184,514 713,838
Quter panel beam| 155.85|120 156 65 16,678 10,114| 2,240,640| 3,786,682 857,410 274,478 - 274,478 1,213,680
Outer panal riba 89. E 139 156 | 64 12,482 5 747| 1,735,026| 2,185,373 267,821 158,407 17,601 176,008 T98, BE1
Allerona 3l.4|172 156 | 682 5,4{:1 l,sﬂ 938,238 T64,150 120,703 55, 380 - 55 320 334,880




Section properties of thin sheets
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Circular arc section

CIRCULAR ARC
HA?

¥ _
X
Area - art a In Radians |
.' |
- . T s8ina -3 T = - NAy
X % ———, (Myy = A X =%t sin a) 4,:;£§f:-ﬂMEﬁ“ﬁ* ;
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l=c08 a _— .= -
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Example 4 — Circular fuselage

Fig. C9.6 11llustrates a circular fuselage
sectlon with longlitudinal stringers represented
by the small clrcles. The area of each
stringer 1s .15 sq. In. The skin thickness is
.04 inches. All material is aluminum alloy

Find the Fuselage centroid position and the
fuselage second moment of area about the y-axis?




Example 5 — Idealized Circular Fuselage

Filgp., AZ20.3 shows the cross-saction of a

clrcular fuselage

=T

The Z stringers are arranpged

symmetrically wlth respect to the center line

4 and X axes,.

To determine the fuselage section properties, it is more
suitable to work with an idealized section in which the
stringers and effective skin areas are collected at the stringer

centroids.

In the present example, initially we will neglect the skin

effect.

008

§ Axis.

= —

Assumed 7
Neutral Axis

T, 0036

Fig. a
] Strain
Fig. A20.3 Diagram

L

. b hT5
P S5
b 4os 3 .08 ;L T

g @

—1 N | N
Stringer S, Stringer S,
Area = ,135 Area = ,18

Stringer 3,
Area = .08

Fig. A20.4



Example 5 — Idealized Circular Fuselage




Example 5 — Idealized Circular Fuselage

Solution steps:

1. List the area of each stringer.

2. Select a reference center point.

3. Calculate the centroid position of each stringer w.r.t
initial axes (Z). R

4. Calculate the first moment of area (3 AZ") 9>

5. Determine the centroid position, where
_ YAZ Z' = Rsin(0)
7 =
YA
1. Correct the stringers centerline position.
Z=27—Z

1. Determine the second moment of area.

Ly = z AZ?
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