

Aircraft Design and Manufacturing Workshop Introduction

Mohamed Abdou Mahran Kasem, PhD
Aerospace Engineering Department
Cairo University

Types of aircrafts according to their wing/tail configuration

Tailless aircraft (Flying Wings)

Tandem wing aircraft

Tailed aircrafts

Canard aircraft

Introduction – Tailless aircrafts

An aircraft with one lifting surface only – Flying wing

Flight Direction

Flying wing configurations

Advanced Materials and Structures Lab.

Comparison between conventional and tailless aircrafts

Conventional aircrafts

- > Aircraft with horizontal and vertical tail.
- Give relatively high drag (not always) and more expensive.
- ➤ A pusher Propeller more difficult to install.
- The Permissible CG-limits higher.

Flying-Wing aircrafts

- Aircraft without horizontal tail and sometimes without vertical tail.
- Theoretically the flying wings give low drag coefficient and should be less expensive.
- ➤ A pusher Propeller easier to install.
- > The permissible CG-limits are smaller.

Aircraft design process

Facts

Keep this in your mind:

There is no perfect aircraft, but do your best to make your design perfect.

Nearly every design can be made fly, but do your best to make your design optimum.

