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Abstract
Pesticide application can have an adverse effect on pollinator honey bees, Apis mellifera L., ranging from mortality to
sublethal effects. Therefore, it is necessary to understand any potential effects of pesticides. The present study reports the
acute toxicity and adverse effects of sulfoxaflor insecticide on the biochemical activity and histological changes on A.
mellifera. The results showed that after 48 h post-treatment, the LD25 and LD50 values were 0.078 and 0.162 µg/bee,
respectively, of sulfoxaflor on A. mellifera. The detoxification enzyme activity shows an increase of glutathione-S-
transferase (GST) enzyme on A. mellifera in response to sulfoxaflor at LD50 value. Conversely, no significant differences
were found in mixed-function oxidation (MFO) activity. In addition, after 4 h of sulfoxaflor exposure, the brains of treated
bees showed nuclear pyknosis and degeneration in some cells, which evolved to mushroom shaped tissue losses, mainly
neurons replaced by vacuoles after 48 h. There was a slight effect on secretory vesicles in the hypopharyngeal gland after 4 h
of exposure. After 48 h, the vacuolar cytoplasm and basophilic pyknotic nuclei were lost in the atrophied acini. After
exposure to sulfoxaflor, the midgut of A. mellifera workers showed histological changes in epithelial cells. These findings of
the present study showed that sulfoxaflor could have an adverse effect on A. mellifera.
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Introduction

Over 90% of flowering plant species in hot and humid
environments require pollination to produce healthy fruit
(Ollerton et al. 2011). Animal pollination is essential for
reproduction of most flowering plants (Kremen et al. 2007).
Loss of insect pollinators is a menace for global food
security. Honeybees are globally considered essential pol-
linators in crops, fruits-bearing plants and wild species
(Winfree et al. 2008). With remarkable success, bees pol-
linate 71 common crops from hundreds of plant species that
make up 90% of the world’s food supply (Morse and Cal-
derone 2000; Gallai et al. 2009; Artz et al. 2011). However,

recently some world regions have been suffering from an
increase in losses from their managed honey bee colonies.
Colony Collapse Disorder (CCD) was first reported in 2006
in the USA (Neumann and Carreck 2010). The interaction
between environmental stress factors, particularly exposure
to pesticides and pathogens, is believed to be the main
potential cause of colony collapse. It is difficult to define the
main reasons for loss of colonies due to the varied social
behavior of bees. They are exposed to daily human activ-
ities and other environmental factors. While numerous
factors lead to losses, new reports have shown some of
these factors include bee-keeping practices, pests, diseases,
pesticide use, agricultural practices, and climate change
(Hristov et al. 2021). Previous investigation has reported
that exposure to insecticides affects colony stability (Henry
et al. 2012) and homing capacity of honey bees (Tosi et al.
2017; Fulton et al. 2019), as well as memory neuronal
inactivation in the mushroom body, olfactory learning,
bumble bee colony growth, and queen production (White-
horn et al. 2012). Pesticides can disrupt physiological pro-
cesses unrelated to the intended modes of action
(Chakrabarti et al. 2015). For example, they can cause
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oxidative stress and apoptosis (Gregorc et al. 2018) in bees
and can exhibit smaller and irregularly shaped hypophar-
yngeal glands in A. mellifera (Menail et al. 2020). Neoni-
cotinoids are the most studied pesticides in terms of side
effects on pollinators with emphasis on their impacts on
different bee species (Tsvetkov et al. 2017). Sulfoxaflor, the
first commercial insecticide of the sulfoximines, is a sys-
temic insecticide that translocates via treated crop plants and
may contaminate pollen and nectar (Giorio et al. 2021;
EFSA 2019). Sulfoxaflor acts as antagonist of the nicotinic
acetylcholine receptor (nAChRs). The binding affinity of
sulfoxaflor to the receptor makes it a distinctive insecticide
compared to other nAChRs antagonists, which could be
somewhat less toxic than other neonicotinoids such as
imidaclocloprid and clothianidin (Azpiazu et al. 2021). As it
is responsible for the digestion and absorption of ingested
food, the insect’s midgut is a vital organ for toxicity studies.
Additionally, chemical ingestion can affect other non-target
insect organs as insecticides enter the midgut barrier and get
distributed in the hemolymph (Catae et al. 2018) and
damage mushroom bodies in the brain (de Morais et al.
2018). Sulfoxaflor is an effective insecticide against several
sucking insect pests which are resistant to other insecticide
classes including resistant species to the neonicotinoids.
Due to its lack of cross-resistance, sulfoxaflor is a poor
substrate for the metabolic enzymes endowing resistance to
other classes of insecticides (Sparks et al. 2013).

Chronic exposure to Sulfoxaflor at field-recommended
concentrations has been shown to diminish egg-laying and
impair reproductive success in bumblebees (Siviter et al.
2018, 2020). In contrast, no effect was found on learning
and memory of bumblebees after acute exposure to sul-
foxaflor (Siviter et al. 2019) or the escape response of
locusts (Parkinson et al. 2020). Exposure of A. mellifera
colonies to Sulfoxaflor in a flight enclosure caused acute
toxicity but did not otherwise impact flight activity or long-
term colony development (Cheng et al. 2018). Sulfoxaflor
has recently been shown to increase oxidative stress and
induce apoptosis in A. mellifera (Chakrabarti et al. 2020).
So far, it has been shown that exposure of honey bees to
sublethal doses of insecticides could affect motor activity,
feeding, development, reproductive system, and enzyme
(antioxidant and detoxification) mechanisms (Murawska
et al. 2021). In contrast, sulfoxaflor has a low synergistic
effect in bee species after treatment of bees with the LD50

value of sulfoxaflor alone or in combination with the fun-
gicide fluxapyroxad (Azpiazu et al. 2021). Thus, in a semi-
field study, no significant effects of sulfoxaflor and the
fungicide azoxystrobin were found on bees (Tamburini
et al. 2021). While, both forms of chlorntraniliprole (tech-
nical-grade and formulation product) had a toxic effect after
4 or 72 h post-treatments (Williams et al. 2020). On the
other hand, few studies have demonstrated the

detoxification enzymes to conventional insecticides in
honeybees (Papadopoulos et al. 2004; Johnson et al. 2006).

Generally, the lethal and sublethal exposure to chemical
or bio-insecticides may lead to changes in the biochemical
and physiological characteristics of insects (Awad et al.
2022; Moustafa et al. 2022). Exposure of honey bees to
insecticides may effect their motor activity, feeding,
development, reproductive system and enzyme activities.
Therefore, the aim of our work was to evaluate the effect of
LD25 and LD50 values of sulfoxaflor on honey bee. Our
present work aims to assess the toxicity and the adverse
effects of the insecticide sulfoxaflor on the activity of
detoxification enzymes (Glutathione-S-Transferase and
Mixed-Function Oxidases). In addition, we investigated the
damage caused by sulfoxaflor in histopathological alteration
for each brain, midgut and the hypopharyngeal gland of
Apis mellifera.

Materials and methods

Apis mellifera samples

Adult worker bees (≥21days) were collected from ade-
quately fed, healthy, disease-free, and queen-right colonies
with known history and physiological status at the apiary
yard of the Faculty of Agriculture, Cairo University, Egypt.
The collected bees were reared on sucrose solution in water
(50% w/v) at a temperature of 25 ± 2 °C with a relative
humidity of 60–70%.

Bees bioassay

Bees were assembled individually without touching with
hands directly to the 15 mL falcon tube (this will make bees
move normally) with ventilation holes. Non-anesthetization
methods, including CO2, ether and low temperature, were
used to reduce mortality. Bees were collected in the early
morning directly from the opening of a tunnel, and we
starved them for 2 h in the incubator before the test. Five
doses were prepared in a geometric series of sulfoxaflor
including; 0.039, 0.078, 0.156, 0.321, and 0.625 mg/L to
determine the LD values. Ten µL of each sugary con-
centration solution was applied to the lid of the falcon tube.
Then the tube was inverted so that it was in the bottom and
turned it upside down to allow the bee to feed on. We
calculated consumption by weighing the empty tube cover
for each tube and then added 10 µL droplets of the pesticide
in sugary solution to the cover using an adjustable micro-
pipette (2–20 microliter). Three replicate groups of ten
separated bees were conducted. For the control treatment,
individual bees were fed sucrose only. After feeding the
bees on the treated or untreated diet for 4 h, the live bees
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were transferred onto a new falcon tube attached with a
1.5 mL of Eppendorf tube that stands vertically with sucrose
solution only. The mortality percentage (%) of bees was
measured and recorded after 24 and 48 h post-treatment.
This experiment was conducted twice.

Biochemical analysis

Sample preparation Two adult honey bees were collected
from each replicate cage (3 replicates) after treating the
honey bees with LD25 and LD50 values of sulfoxaflor as
mentioned above. Each sample was homogenized in phos-
phate buffer saline pH 7.4 according to according to
Chakrabarti et al. (2020) using a TT-30K digital handheld
homogenizer (Hercuvan Lab System, Malaysia) at
8000 rpm for two cycles of 30 s /cycle. The homogenates
were centrifuged at 10,000 rpm for 5 min at 4 °C. The
supernatants were kept at −20 °C until they were used.

Glutathione- S-Transferase (GST) assay GST activity was
determined according to Habig et al. (1974) and Moustafa
et al. (2021a). The reaction solution was composed of 10 µL
of homogenate sample as enzyme stock solution, 25 µL
30 mM CDNB, and 25 µL 50 mM GSH. The GST activity
was measured at 340 nm at 25 °C for 3 min using a spec-
trophotometer (Jenway-7205 UV/Vis, Staffordshire, UK).

Mixed-Function Oxidases (MFO) MFO activity was tested
according to Hansen and Hodgson (1971) and Moustafa et al.
(2021b). First, we incubated 100 µL of 2mM p-nitro anisole
with 90 µL of homogenate sample for 2 min at 27 °C, and we
added 10 µL of 9.6 mM NADPH to initiate the reaction. Then,
the activity of MFO was measured at 405 nm for 15min using
molecular devices of microplate reader (Clindiag-MR-96,
ISO09001:2008, Steenberg, Belgium). Finally, we used the
standard curve of p-nitrophenol to calculate the MFO activity.

Histopathological studies

Seven adult honeybees were used for each treatment; each
worker bee was anesthetized by cold exposure (4 °C) and
carefully dissected (Dade 1977) with a fine pointed
watchmaker forceps (Dumont, No: 5) and dissection scis-
sors (Hammacher, Solingen) under a stereomicroscope
(Euromex). First, we pinned the live bees onto a glass petri
dish filled with paraffin by insect pins to prevent them from
moving. Then, the cuticle was removed by cutting both
sides of the abdomen to expose the internal organs (mid-
gut). Finally, the head was dissected to remove the brain
and hypopharyngeal gland.

Autopsy samples were taken from the brain, hypophar-
yngeal gland, and main gut of bees in different groups fixed
in 10% formol saline for twenty-four hours. We used tap

water to wash, then serial dilutions of alcohol (methyl,
ethyl, and absolute ethyl) for dehydration. We cleared
specimens in xylene and embedded them in paraffin at
56 °C in a hot air oven for 24 h. We prepared paraffin bees
wax tissue blocks for sectioning at 4-micron thickness by
slide microtome. Then, the tissue sections were collected on
glass slides, deparaffinized and stained with hematoxylin-
eosin for examination through the electric light microscope
(Banchroft et al. 1996).

Data analyses

The statistical analysis program LDP line was used to
determine the LD values for sulfoxaflor insecticide (with
95% confidence limits). We performed a one-way ANOVA
for the enzymatic activity using SAS software (SAS 2001).
We separated the mean values with the Duncan’s multiple
range test.

Results

Effects of sulfoxaflor on A. mellifera

After 48 h post-treatment, the LD25 and LD50 values were
0.0785 and 0.1623 µg/bee, respectively with 95% con-
fidence limit of 0.0511–0.1045 and 0.1242–0.2155,
respectively (Table 1) of sulfoxaflor on A. mellifera. In
addition, exposures to sulfoxaflor caused changes in the
level of the enzyme activity of GST (Table 2). The results
indicated that sulfoxaflor caused a significant increase in
GST activity after 12, 24 and 48 h of post-treatment
[F= 33.72, 17.51 and 110.23, P= <0.0001, 0.0008 and
<0.0001] at the LD50 (2.3, 1.58 and 1.29-fold, respectively)
compared to the control treatment. In contrast, sulfoxaflor at
LD25 caused a significant decrease in the GST activity
compared to the control (Table 2). The activity of MFO
showed no significant differences after treating the A. mel-
lifera with LD25 and LD50 of sulfoxaflor [F= 13.52, 0.23,
1.71 and 1.24, P= 0.001, 0.793, 0.234 and 0.333] com-
pared with the control group (Table 3).

Histopathological changes of brain, hypopharyngeal
glands and midgut of A. mellifera

Brain

We observed no histopathological alteration in the control
of A. mellifera brain (Fig. 1A). The brain of A. mellifera L.
manifests normal structure, Kenyon cells of the mushroom
bodies were apparent, well-developed spherical nuclei and
clear nucleoli. After 4 h the brain of treated bees with
insecticide (sulfoxaflor) showed nuclear pyknosis and
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degeneration in some cells (Fig. 1B). The histopathology
brain of bees treated with sulfoxaflor shows that most
neuronal cells have nuclear pyknosis and degeneration for
24 h (Fig. 1C). After 48 h, the mushroom-shaped tissue
showed loss of most neurons and was replaced by vacuoles
in magnification.

Hypopharyngeal gland

The hypopharyngeal gland of A. mellifera L. contains
secretory cells, the cytoplasm of which contains a variable
number of secretory vesicles that appear almost as unstained
as the control (Fig. 2A). There was a slight effect in
secretory vesicles of treated bees with sulfoxaflor after 4 h
(Fig. 2B). After 24 h, the treated bees showed atrophy with
nuclear pyknosis in most cells, showing a loss of cyto-
plasmic fat vacuoles (Fig. 2C). After 48 h, the vacuolar
cytoplasm and basophilic pyknotic nuclei were lost in the
atrophied acini.

Midgut

The midgut epithelial cells of A. mellifera workers
(control) show normal nuclei, and the cytoplasm was
densely homogeneous (Fig. 3A). After 4 h exposure to
sulfoxaflor, the midgut epithelial cells of A. mellifera
workers showed epithelium villi, many cytoplasmic
vacuoles, and degenerated vacuolar lumen. The midgut
region of bees treated with sulfoxaflor for 24 h showed
the necrobiotic change in the lining epithelial cells. After
48 h, the mucosal lining epithelium showed necrosis with
loss of the histological structure and was replaced by
pigmented material. Other areas of the mucosa had
degenerative vacuolar changes.

Discussion

This study provides new insight into sulfoxaflor’s lethal and
sublethal effects on honeybees. To understand this insecti-
cide’s negative effects, both mortality and biochemical
parameters on A. mellifera were measured. Results con-
firmed that sulfoxaflor is very toxic (LD50= 0.078 µg/mL)
to honeybees, which have fewer detoxification genes than
insect pests, thus making honeybees more susceptible to
pesticide exposure (Sadd et al. 2015). Other studies have
classified sulfoxaflor toxicity on honeybees with oral and
contact LD50 values of 0.05 and 0.13 µg/mL a.i/bee,
respectively (Cheng et al. 2018), while its LC50 value was
1.72 mg/L after 96 h post-treatment (Li et al. 2021). In
parallel, in the Pesticide Properties Data Base, the contact
LD50 of sulfoxaflor was 0.379 μg/bee and for acute LD50

was 0.146 μg/bee for honeybees (Li et al. 2021).
The biochemical and physiological effects of insecticides

can render individual honeybees unable to perform their
mission smoothly, thus affecting the colony’s performance
(Chakrabarti et al. 2020). GST and MFO are important
metabolic enzymes and are essential elements in developing
insecticide detoxication on insects (Bird et al. 2022). In the
current study, GST exhibited higher activity in A. mellifera
to sulfoxaflor. In addition, the activity of mixed-function
oxidase did not significantly increase in bees. These results
agree with Hu et al. (2014) and Zhang et al. (2016) who
found an overexpression of GST related to resistance to
diamide insecticides. There is also a positive correlation
between the toxicity of Lambda-cyhalothrin and the activity
of GST enzyme (Zhu et al. 2017), while no effect on
esterase and GST activity was observed after spraying A.
mellifera with sulfoxaflor (Zhu et al. 2017).

Thus, the exposure of honey bee workers to sulfoxaflor
for 48 h caused a negative effect on the mushroom bodies.

Table 2 Mean (±SE) of GST
enzyme activity of A. mellefera
after treated with LD25 and LD50

values of sulfoxaflor

Treatments GST (μmole/bee/mg of protein)

4 h 12 h 24 h 48 h

Control 0.372a ± 0.04 0.336b ± 0.01 0.378b ± 0.08 0.334b ± 0.01

LD25 0.253ab ± 0.03 0.133c ± 0.02 0.151c ± 0.01 0.123c ± 0.01

LD50 0.186b ± 0.04 0.787a ± 0.09 0.601a ± 0.03 0.433a ± 0.02

F 4.82 33.72 17.51 110.23

P-value 0.0377 <0.0001 0.0008 <0.0001

Means within a column followed by different letters are significantly different (p < 0.05).

Table 1 Toxicity of sulfoxaflor
on A. mellefera

Insecticide Values of LDs Slope±SE

LD25 (µg/ml) (95%
Confidence Limit)

LD50 (µg/ml) (95%
Confidence Limit)

LD90 (µg/ml) (95%
Confidence Limit)

Sulfoxaflor 0.0785
0.0511–0.1045

0.1623
0.1242–0.2155

0.6443
0.4277–1.3449

2.140 ± 0.344
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This damage may affect walking behavior (Martin et al.
1998; Helfrich-Förster et al. 2002), reduce memory ability
and learning (Peng and Yang 2016) and influence the sen-
sory organs in the head (Hansson and Anton 2000; Paulk
et al. 2009; de Morais et al. 2018). As shown above, there
was a slight effect in secretory vesicles after 4 h from
exposure to sulfoxaflor, while after 24 h the effect has
increased to atrophy with nuclear pyknosis in most of the
cells showing loss of cytoplasmic fat vacuoles and after 48 h
increased in basophilic pyknotic nuclei in the atrophied
acini. This corresponds with the findings of several authors
who confirmed the same histological effects after exposure
to insecticides. When honey bees are exposed to insecti-
cides, the cytoplasm degenerates and the nuclei of the
secretory vesicles of the hypopharyngeal gland undergo
pyknosis, which ultimately results in vacuoles and hetero-
geneous secretory vesicle content (Halberstadt 1980; Silva
de Moraes and Bowen 2000).

Minor targets in insects may be affected. Although the
insecticide’s major target is (nAChR) in insect nervous
systems (Tomizawa and Casida 2003; Tan et al. 2007) and
the organs concerned the metabolism. The ultrastructure
changes were revealed through ultrastructural study.
Structures harmed by being exposed to sulfoxaflor were
given to bees. This finding corresponds with Oliveira et al.
(2014), who showed that morphological ultrastructure in the

midguts of adults and larvae of A. mellifera are exposed to
insecticides. A study on the midgut of Africanized honey-
bee with a dose of 0.428 ng/mL of thiamethoxam per day
reduced the number of regenerative cells in the epithelium
and incited cytoplasmic vacuolization. The midgut is the
part of the digestive tract responsible for most food pro-
cessing and absorption, and it is known as the functional
stomach (Cruz-Landim 2009). Because the pesticide was
taken orally, the midgut was one of the first organs to be
exposed to the lethal dose, and it suffered immediate con-
sequences at the start of the exposure. In addition, our
results correspond with Abd Alla and El-Wassef (2019)
who reported that the neonicotinoids insecticides were
lethal for worker honeybees and revealed changes that
happened in the midgut. The nuclei were abnormal, small-
size and deep-blue color (nucleus pyknosis), most of the
lining mucosal epithelium showed vacuolar degeneration in
the cytoplasm after being treated with a recommended dose
of imidacloprid.

Conclusions

This study elucidated the adverse effects of sulfoxaflor
insecticide on A. mellifera. Sulfoxaflor caused significant
effects on mortality after 48 h post-treatment. Conversely,
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PK 

Fig. 1 Light micrographs of the brain of Apis mellifera L. (H&E X160)
A the control bees showing no histopathological alteration B Brain of
treated bees administrated insecticide (sulfoxaflor) for 4 h. Showing
nuclear pyknosis (pk) and degeneration in some few cells. C Brain of
treated bees with administrated insecticide (sulfoxaflor) For 24 h.
showing most of the neuronal cells have nuclear pyknosis and

degeneration. (D) (x80) after 48 h. The mushroom shaped tissue
showed loss of most neurons and replaced by vacuoles in magnifica-
tion showing vacuolization replacing the damage neurons. Nb:
mushroom body (Mb), calyx (Ca), kenyon cells (kc), pyknosis (pk),
damage neurons(dn)

Table 3 Mean (±SE) of MFO
enzyme activity of A. mellefera
after treated with LD25 and LD50

values of sulfoxaflor

Treatments MFO (µmole/bee/mg of protein)

4 h 12 h 24 h 48 h

Control 0.107a ± 0.01 0.106a ± 0.001 0.114a ± 0.008 0.114a ± 0.01

LD25 0.143a ± 0.02 0.126a ± 0.02 0.090a ± 0.02 0.083a ± 0.01

LD50 0.053b ± 0.02 0.121a ± 0.02 0.069a ± 0.01 0.093a ± 0.006

F 13.52 0.23 1.71 1.24

P-value 0.0019 0.7955 0.2340 0.3337

Means within a column followed by different letters are significantly different (p < 0.05).
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treated bees show significant differences in GST enzyme
compared with the control group. The above findings of the
present study show that sulfoxaflor has an adverse effect on
tissue structure in the different organs (brain, hypophar-
yngeal gland and midgut) of the worker honeybee A. mel-
lifera L, which eventually leads to death.
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Fig. 2 Light micrographs of the hypopharyngeal gland of Apis melli-
fera L. (H&E X160). A the control bees showing cytoplasm of the
secretory cell seen contain a variable number of secretory vesicles that
are almost unstained. B hypopharyngeal gland of treated bees with
administrated insecticide (sulfoxaflor) for 4 h, showing slightly effect

in secretory vesicles (vs). C hypopharyngeal gland of treated bees with
administrated insecticide (sulfoxaflor) for 24 h, showing atrophy with
nuclear pyknosis (pk) in most of the cells showing loss of cytoplasmic
fat vacuoles. (D) (X80) after 48 h. There were loss of the vacuolar
cytoplasm and basophilic pyknotic nuclei in the atrophied acini

A B C D 

ev 
v

N 

Fig. 3 Light micrographs of the midgut of Apis mellifera L. (H&E
X160) A the control bees showing single layered epithelium with
columnar cells containing spherical nucleus (N) and apical surface
with peritrophic matrix layers (pm). B Midgut region of treated bees
with administrated insecticide (sulfoxaflor) for 4 h. Showing vacuolar
degeneration lumen (L) epithelium of villi (ev). C Midgut region of

treated bees with Administrated Insecticide (sulfoxaflor) for 24 h.
showing necrobiotic change was detected in the lining epithelial cells.
(D) (x80) after 48 h. The mucosal lining epithelium showed necrosis
with lose of the histological structure and replaced by pigmented
material. Other’s areas of the mucosa had vacuolar degenerative
changes
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