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Abstract: Background: Spodoptera littoralis (Boisd.) is a prominent agricultural insect pest that has
developed resistance to a variety of insecticide classes. In this study, the resistance of three field
strains of S. littoralis, collected over three consecutive seasons (2018 to 2020) from three Egyp-
tian Governorates (El-Fayoum, Behera and Kafr El-Shiekh), to six insecticides was monitored.
Methods: Laboratory bioassays were carried out using the leaf-dipping method to examine the
susceptibility of the laboratory and field strains to the tested insecticides. Activities of detoxifi-
cation enzymes were determined in an attempt to identify resistance mechanisms. Results: The
results showed that LC50 values of the field strains ranged from 0.0089 to 132.24 mg/L, and the
corresponding resistance ratio (RR) ranged from 0.17 to 4.13-fold compared with the susceptible
strain. Notably, low resistance developed to spinosad in all field strains, and very low resistance
developed to alpha-cypermethrin and chlorpyrifos. On the other hand, no resistance developed
to methomyl, hexaflumeron or Bacillus thuringiensis. The determination of detoxification enzymes,
including carboxylesterases (α- and β-esterase), mixed function oxidase (MFO) and glutathione-S-
transferase (GST), or the target site of acetylcholinesterase (AChE), revealed that the three field strains
had significantly different activity levels compared with the susceptible strain. Conclusion: Our
findings, along with other tactics, are expected to help with the resistance management of S. littoralis
in Egypt.

Keywords: resistance; susceptibility; monitoring; Spodoptera littoralis; insecticides; detoxification
enzymes

1. Introduction

The cotton leaf worm Spodoptera littoralis (Boisd.) is an insect, which causes serious
losses in over 80 economically significant crop species [1]. It is spread in Africa and in
the Middle Eastern nations [2]. Excessive dependence on chemical control has led to the
development of resistance to numerous classes of insecticides, and insect resistance to
insecticides has been documented in more than 600 arthropod species [3].

Resistance was first reported in S. littoralis in 1968 to methyl-parathion, which belongs
to organophosphates [1]. In recent years, S. littoralis has evolved high levels of resistance to
different groups of insecticides, such as organophosphates, pyrethroids, carbamates and
insect growth regulators (IGRs) [4,5], as well as to several newer insecticides, including
indoxacarb and chlorantraniliprole [6,7]. In addition, S. littoralis is resistant to bioinsec-
ticides, including Bacillus thuringiensis [5], spinosad [7,8] and spinotram [7], due to the
acceleration caused by the absence of a hibernation period in this pest [9]. Currently,
S. littoralis is in the top 30 most resistant species in the world, according to the Arthropod
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Pesticide Resistance Database (http://www.pesticideresistance.org, accessed on 18 May
2021). Thus, other species, such as Spodoptera litura (Fabricius) [10–12], Spodoptera frugiperda
(Smith) [13] and Spodoptera exigua (Hübner) [14], have developed resistance to a variety of
insecticide groups due to long-term insecticide application.

Two major mechanisms of insecticide resistance are known [3], including target change
and mechanisms that reduce the amount of insecticide reaching the target (reduced pen-
etration and interference of detoxification enzymes). Target site resistance mediated by
acetylcholinesterase enzyme (AChE) insensitivity to insecticides has been investigated
by biochemical approaches in several Spodoptera species [15–17]. In addition, metabolic
detoxification enzymes including carboxylesterases (CarEs), mixed function oxidase (MFO)
and glutathione S-transferases (GSTs) are remarkable defensive physiological reactions,
which are essential for insecticide metabolism [18,19].

Both CarEs and MFO are mediated reactions [20], resulting in the reduction in or
oxidation of chemical insecticides. GSTs convert the detoxified molecules into more water-
soluble forms by glutathione conjugation, which facilitates their rapid removal from the
cell [21]. This could be achieved by over-expression [22] or expressing duplicated isoforms
of these enzymes [23].

Consequently, understanding resistance to insecticides and its mechanisms could
improve resistance management strategies. This understanding can be achieved by mon-
itoring the metabolic enzymes’ activity as an efficient biomarker [24,25], whether in the
region or between regions. Generally, effective resistance monitoring depends on the avail-
ability of reliable methods of monitoring, including the bioassay and biochemical methods
that represent the primary means of testing for insecticide resistance [1].

Therefore, in the present study, the status of resistance to six insecticides (chlorpyrifos,
methomyl, alpha-cypermethrin, hexaflumeron, Bacillus thuringiensis and spinosad) has been
monitored in three field strains collected from three Egyptian governorates (El-Fayoum,
Beheira and Kafr El-Shiekh) over three consecutive seasons (2018 to 2020). In addition, the
activity of detoxification enzymes was investigated to explore the mechanism of resistance
to the tested compounds.

2. Materials and Methods
2.1. Insects

A susceptible laboratory strain of S. littoralis was continuously inbred on castor bean
(Ricinus communis) leaves under laboratory conditions [7,26] for more than ten generations
with no exposure to any pesticides. The adult moths fed on sugar solution (10%) as a dietary
supplement [27]. Three field strains of S. littoralis were collected from three Egyptian
governorates (Fayoum; 29◦18′30′′ N and 30◦50′39′′ E, Beheira; 30◦59′00′′ N and 30◦12′00′′ E
and Kafr-El-Shiekh; 31◦06′42′′ N and 30◦56′45′′ E) over three consecutive seasons (2018 to
2020). Egg masses of S. littoralis were collected from cotton and vegetable fields in May–July,
before pesticide application. These masses were maintained in a rearing room at 60–70%
relative humidity, at a temperature of 25 ± 1 ◦C and a 16 h:8 h light/dark regimen, to
obtain the 4th instar larvae for bioassays and biochemical studies.

2.2. Insecticides and Reagents Used

The insecticides used in bioassays are presented in Table 1. The substrates and reagents
used for biochemical studies were purchased from Sigma Aldrich, Germany.

2.3. Bioassay

The leaf-dipping method was conducted as described by Moustafa et al. [29] and
Awad et al. [30]. Fourth-instar larvae of S. littoralis were used for the bioassays. As shown
in Table S1, 6 concentrations, ranging from 0.002 to 16 mg/L, of each tested insecticide
were used. Castor bean leaves were immersed in each concentration for 20 s; untreated
leaves were immersed in water for the control group then t allowed to air-dry. Leaves with
ten larvae were then transferred into a glass container (0.25 L), and five replicates were
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performed for each concentration [7,31]. For conventional insecticides, i.e., chlorpyrifos,
methomyl and alpha-cypermethrin, lethal concentrations (LCs) were calculated after 24 h of
treatment. Meanwhile, for bioinsecticides, i.e., hexaflumeron, B. thuringiensis and spinosad,
the larvae fed on insecticide-treated leaves for one day, then on untreated leaves for two
days, and mortality was recorded by the end of the third day to calculate LC50 and LC90.

Table 1. Used insecticides and their actions.

Common Name Trade Name (a.i. %)
Formulation Mode of Action *

Chlorpyrifos Dursban 48% EC Acetylcholinesterase (AChE) inhibitors
Methomyl Methomyl 90% WP

Alpha-cypermethrin Alpha-cypermethrin 10% EC Sodium channel modulators
Hexaflumeron Demeron 10% EC Inhibitors of chitin biosynthesis

Bacillus thuringiensis Dipel-2X 6.4% WP Microbial disruptors of insect midgut membranes

Spinosad Spinotor 24% SC Nicotinic acetylcholine receptor (nAChR) allosteric
modulators—Site I

* Insecticides Resistance Action Committee, IRAC [28].

2.4. Biochemical Analysis
2.4.1. Sample Preparation

For enzyme activity assays, 50 mg of untreated fourth instar larvae from susceptible
or field strains were homogenized in 1 mL distilled water in a chilled glass Teflon tissue
homogenizer. Homogenates were centrifuged at 8000 rpm for 15 min at 4 ◦C. The super-
natants were kept at −20 ◦C prior to biochemical assays. Three replicates were used for
each strain. Protein content was determined as described by Bradford [32].

2.4.2. Detoxification Enzyme Assays
Carboxylesterase (CarE)

Determination of α- and β-esterases’ activity was performed as described by Van
Asperen [33]. The hydrolysis of α- or β-naphthyl acetate was spectrophotometrically
measured at 600 and 550 nm, respectively. The total CarE activity was calculated using the
standard curves of α- and β-naphthol and protein content.

Mixed Function Oxidase (MFO)

The activity of MFO was measured as described by Hansen and Hodgson [34]. The re-
action mixture of enzyme solution, NADPH, glucose-6-phosphate and Glucose-6-phosphate
dehydrogenase was initiated by adding p-nitroanisole and incubated at 37 ◦C for 30 min.
The reaction was then terminated by adding HCl. The optical density was measured
spectrophotometrically for 10 min at 405 nm.

Glutathione S-Transferase (GST)

The activity of GST was determined according to Habig et al. [35]. 1-chloro 2,4-
dinitrobenzene (CDNB) was used as a substrate. The mixture of potassium phosphate
buffer, GSH, enzyme solution and the substrate was incubated for 5 min at 30 ◦C. The
absorbance increase at 340 nm was then recorded versus a blank mixture. The nanomole-
conjugated substrate/min/mg protein was then determined.

2.4.3. Acetylcholine Esterase (AChE)

The activity of AChE was determined as indicated by Simpson et al. [36]. Acetylcholine
bromide (AChBr) was used as a substrate. The reaction mixture of the enzyme solution,
phosphate buffer and substrate was incubated for 30 min at 37 ◦C. The AChBr decrease
was read at 515 nm.
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2.5. Statistical Analysis

Probit analysis was used to calculate median lethal concentrations (LC50) and their
95% confidence limits (CLs) [37]. To calculate the resistance ratio (RR), the LC50 of a field
strain was divided by the LC50 of the laboratory strain. In addition, one-way ANOVA
with GraphPad-Prism v. 9.3 statistical analysis software were used to analyze the enzymes’
activity data. Differences among the means of strains were assessed using Tukey’s HSD
test at a significance level of p ≤ 0.05.

3. Results
3.1. Susceptibility of Laboratory Strain of S. littoralis to the Tested Insecticides

The toxicity levels of the tested insecticides (chlorpyrifos, methomyl, alpha-
cypermethrin, hexaflumeron, B. thuringiensis and spinosad) to the susceptible strain of
S. littoralis are shown in Table 2. Overall, based on LC50 values, insecticide toxicity to
S. littoralis was as follows, in descending order: Spinosad > B. thuringiensis > hexaflumeron
> alpha-cypermethrin > chlorpyrifos > methomyl. It is obvious that the bioinsecticides
(spinosad, B. thuringiensis and hexaflumeron) were more toxic than the conventional ones,
with LC50 of 0.0089, 6.11 and 14.57 mg/L, respectively.

Table 2. Susceptibility of the 4th instar larvae of a laboratory strain of S. littoralis to the tested
insecticides. Castor leaves were dipped in six concentrations of each tested insecticide. Five replicates,
ten larvae each, were used for each concentration. (i.e., 50 larvae/concentration). The larvae were
allowed to feed for 24 h on leaves treated with conventional insecticides, and for 72 h post-treatment
with bioinsecticides. LC50 and LC90 values of the tested insecticides were calculated using the
(LdPLine©) package software according to the Log-Probit analysis method.

Insecticide
a LC50 (mg/L)

(95% Confidence Limits)

b LC90 (mg/L)
(95% Confidence Limits)

Slope ± SE χ2

Chlorpyrifos 86.04 (54.44–124.08) 760.34 (408.06–2807.41) 1.35 ± 0.26 0.12
Methomyl 132.24 (53.41–208.59) 1243.29 (739.91–3809.46) 1.31 ± 0.29 1.10

Alpha-cypermethrin 48.78 (25.53–72.79) 502.78 (270.51–1989.44) 1.26 ± 0.27 1.92
Hexaflumeron 14.57 (7.51–22.38) 196.49 (91.78–1275.15) 1.13 ± 0.26 0.71
B. thuringiensis 6.11 (0.91–11.90) 113.62 (57.63–802.94) 1.00 ± 0.28 0.49

Spinosad 0.0089 (0.007–0.011) 0.035 (0.02–0.08) 2.14 ± 0.39 2.61
a LC50: concentration causing 50% mortality. b LC90: concentration causing 90% mortality.

3.2. Susceptibility of Field Strains of S. littoralis to Conventional Insecticides

As shown in Tables 3–5, in 2018, the Fayoum and Kafr El-Shiekh strains of S. littoralis
showed very low resistance levels to chlorpyrifos (2.37- and 2.08-fold, respectively). In
2019, the resistance ratios were 1.19, 1.38 and 1.18-fold for the Fayom, Beheira and Kafr
El-Shiekh strains, respectively. In 2020, resistance to chlorpyrifos decreased to 1.10- and
0.65-fold in Beheira and Kafr El-Shiekh strains, respectively). As to methomyl, very low
levels of resistance to it were observed in the Fayoum strain (3.11-fold) in 2020 (Table 3)
and in Beheira strain (2.31-fold) in 2018 (Table 4). In contrast, a resistance ratio of <2-fold
was found in the Kafr El-Sheikh strain (Table 5). Regarding alpha-cypermethrin, a very low
level of resistance to it was found in the Fayoum strain (2.02-fold) in 2018 (Table 3); in the
Beheira strain (2.65- and 2.08-fold) in 2018 and 2019, respectively (Table 4); and in the Kafr
El-Sheikh strain (2.79-fold) in 2019 (Table 5).
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Table 3. Susceptibility of fourth instar larvae of Fayoum field strain of Spodoptera littoralis to six
insecticides over three consecutive seasons (2018 to 2020). Egg masses of S. littoralis, collected over
three consecutive seasons (2018 to 2020), were kept in the rearing room until the fourth instar larvae.
Six concentrations of each tested insecticide were prepared, then castor bean leaves were immersed
in each concentration for 20 s. For each concentration, 50 larvae were used to calculate the LC50, LC90

and the resistance ratio.

Insecticides Season
a LC50 (mg/L)

(95% Confidence Limit)

b LC90 (mg/L)
(95% Confidence Limit)

Slope ± SE χ2 c RR

Chlorpyrifos

2018 204.31
(150.29–275.72)

965.09
(610.59–2245.77) 1.90 ± 0.32 6.40 2.37

2019 102.69
(74.77–137.92)

543.90
(344.54–1223.02) 1.77 ± 0.28 4.04 1.19

2020 168.30
(120.04–224.41)

869.28
(566.75–1841.26) 1.79 ± 0.29 2.70 1.95

Methomyl

2018 193.17
(122.05–264.07)

1019.42
(686.81–2057.66) 1.77 ± 0.31 0.20 1.46

2019 147.13
(104.34–195.59)

741.26
(490.02–1524.05) 1.82 ± 0.29 0.88 1.11

2020 411.12
(276.36–753.85)

4371.65
(1763.31–36986.34) 1.24 ± 0.26 0.58 3.11

Alpha-
cypermethrin

2018 98.74
(79.94–121.31)

293.46
(223.13–438.38) 2.70 ± 0.33 0.64 2.02

2019 87.95
(65.07–116.97)

432.67
(280.17–920.30) 1.85 ± 0.29 5.68 1.80

2020 24.34
(13.37–35.65)

220.31
(124.36–738.47) 1.33 ± 0.27 0.19 0.50

Hexaflumeron

2018 3.19
(0.65–7.93)

742.90
(154.31–43013.25) 0.54 ± 0.13 0.79 0.22

2019 1.06
(0.11–2.89)

156.31
(44.11–3986.73) 0.59 ± 0.14 1.85 0.07

2020 2.08
(0.61–4.38)

117.30
(43.44–872.58) 0.73 ± 0.14 0.62 0.14

B. thuringiensis

2018 6.58
(2.37–13.27)

377.19
(133.40–2969.85) 0.72 ± 0.14 0.71 1.08

2019 6.009
(2.22–11.88)

289.44
(109.52–1885.72) 0.76 ± 0.14 0.23 0.98

2020 4.79
(1.65–9.61)

221.02
(85.80 -1385.08) 0.77 ± 0.14 0.32 0.78

Spinosad

2018 0.015
(0.0051–0.032)

0.75
(0.30–4.40) 0.76 ± 0.14 0.57 1.69

2019 0.036
(0.015–0.071)

1.80
(0.64–13.23) 0.75 ± 0.13 0.20 4.04

2020 0.026
(0.009–0.054)

1.77
(0.59–16.45) 0.70 ± 0.13 1.22 2.92

a LC50: concentration causing 50% mortality. b LC90: concentration causing 90% mortality. c RR: LC50 value of the
field strain/LC50 value of the susceptible strain.

3.3. Susceptibility of Field Strains of S. littoralis to Bioinsecticides

The data showed no resistance to hexaflumeron in any of the field strains (Tables 3–5)
during the three seasons (2018–2020), and the resistance ratios ranged from 0.07- to
0.31-fold. Regarding B. thuringiensis, no resistance was detected in the Fayoum and Bereira
strains (Tables 3 and 4), while a moderate level of resistance (2.19-fold) was recorded in the
Kafr El-Shiekh strain in 2020 (Table 5). Nevertheless, a low level of resistance to spinosad
was observed in all field strains (Tables 3–5), and the resistance ratios ranged from 1.79- to
4.31-fold.
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Table 4. Susceptibility of the fourth instar larvae of Beheira field strain of Spodoptera littoralis to
six insecticides over three consecutive seasons (2018 to 2020). Egg masses of S. littoralis, collected over
three consecutive seasons (2018 to 2020), were kept in the rearing room until the fourth instar larvae.
Six concentrations of each tested insecticide were prepared, then castor bean leaves were immersed
in each concentration for 20 s. For each concentration, 50 larvae were used to calculate the LC50, LC90

and the resistance ratio.

Insecticide Season
a LC50 (mg/L)

(95% Confidence Limit)

b LC90 (mg/L)
(95% Confidence Limit)

Slope ± SE χ2 c RR

Chlorpyrifos

2018 72.55
(48.41–99.68)

431.41
(266.53–1085.73) 1.65 ± 0.30 1.93 0.84

2019 119.06
(93.80–151.03)

409.99
(293.39–696.98) 2.38 ± 0.33 1.04 1.38

2020 94.78
(44.95–144.06)

948.82
(532.63–3380.33) 1.281 ± 0.27 0.21 1.10

Methomyl

2018 350.19
(242.53–573.08)

3134.30
(1435.68–17256.54) 1.34 ± 0.26 1.27 2.65

2019 275.24
(209.89–369.16)

1246.54
(799.69–2682.82) 1.95 ± 0.29 4.56 2.08

2020 75.85
(26.33–124.87)

1102.79
(554.11–6393.61) 1.10 ± 0.27 0.31 0.57

Alpha-
cypermethrin

2018 112.54
(83.95–153.34)

582.37
(359.57–1377.15) 1.79 ± 0.28 1.96 2.31

2019 47.36
(33.46–66.34)

315.67
(181.29–914.35) 1.55 ± 0.27 1.35 0.97

2020 20.78
(10.50–30.97)

183.69
(103.24–669.79) 1.35 ± 0.29 2.53 0.43

Hexaflumeron

2018 4.47
(1.13–10.88)

1000.84
(197.07–64021.65) 0.54 ± 0.13 0.35 0.31

2019 2.27
(0.35–5.90)

579.16
(123.98–33838.96) 0.53 ± 0.13 0.41 0.16

2020 4.45
(1.55–9.40)

381.00
(112.35–5137.51) 0.66 ± 0.13 0.84 0.31

B. thuringiensis

2018 5.02
(1.54–10.61)

317.07
(105.57–3351.50) 0.71 ± 0.14 1.92 0.82

2019 9.38
(3.45–19.56)

748.66
(223.46–9533.92) 0.67 ± 0.13 0.52 1.54

2020 5.83
(2.03–11.81)

325.57
(117.90–2424.64) 0.73 ± 0.14 0.11 0.95

Spinosad

2018 0.034
(0.011–0.076)

4.14
(1.06–90.99) 0.61 ± 0.13 1.06 3.82

2019 0.022
(0.007–0.045)

1.34
(0.47–10.77) 0.72 ± 0.14 0.75 2.47

2020 0.030
(0.008–0.070)

4.83
(1.12–156.15) 0.58 ± 0.13 0.88 3.37

a LC50: concentration causing 50% mortality. b LC90: concentration causing 90% mortality. c RR: LC50 value of the
field strain/LC50 value of the susceptible strain.

3.4. Activity of Detoxification Enzymes

To examine the prospective role of detoxification enzymes in the susceptibility of
S. littoralis to the tested insecticides, enzymes assays were performed to determine the
levels of carboxylesterases (α and β- esterases), acetylcholine esterase (AChE), glutathione-
S-transferase (GST) and mixed-function oxidase (MFO) in the tested field strains in com-
parison with the laboratory one. Data are shown in Tables 6 and 7.
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Table 5. Susceptibility of the fourth instar larvae of Kafr El-Shiekh field strain of Spodoptera littoralis
to six insecticides over three consecutive seasons (2018 to 2020). Egg masses of S. littoralis, collected
over three consecutive seasons (2018 to 2020), were kept in the rearing room until the fourth instar
larvae. Six concentrations of each tested insecticide were prepared, then castor bean leaves were
immersed in each concentration for 20 s. For each concentration, 50 larvae were used to calculate the
LC50, LC90 and the resistance ratio.

Insecticide Season
a LC50 (mg/L)

(95% Confidence limit)

b LC90 (mg/L)
(95% Confidence limit)

Slope ± SE χ2 c RR

Chlorpyrifos

2018 179.75
(131.97–236.47)

841.11
(561.89–1673.56) 1.91 ± 0.29 1.48 2.08

2019 102.02
(53.50–150.47)

886.51
(516.95–2733.01) 1.36 ± 0.28 1.67 1.18

2020 56.77
(7.58–107.13)

1207.35
(513.66–28677.79) 0.96 ± 0.30 5.94 0.65

Methomyl

2018 141.32
(97.87–189.88)

764.40
(496.42–1647.43) 1.74 ± 0.29 1.42 1.07

2019 369.00
(251.16–635.40)

3699.14
(1581.64–25705.64) 1.28 ± 0.26 1.71 2.279

2020 155.66
(106.59–212.75)

956.87
(590.38–2341.14) 1.62 ± 0.28 3.65 1.18

Alpha-
cypermethrin

2018 85.57
(62.31–114.94)

453.29
(287.13–1019.37) 1.77 ± 0.28 4.04 1.75

2019 80.56
(59.92–105.68)

366.74
(245.51–723.72) 1.94 ± 0.29 0.64 1.65

2020 24.37
(13.72–35.46)

197.58
(111.07–701.52) 1.41 ± 0.30 3.96 0.50

Hexaflumeron

2018 1.39
(0.41–2.99)

110.87
(35.99–1183.87) 0.67 ± 0.13 0.05 0.10

2019 2.44
(0.62–5.49)

242.83
(74.26–3266.44) 0.64 ± 0.13 0.20 0.17

2020 3.08
(0.57–7.88)

861.27
(166.27–70842.59) 0.52 ± 0.13 0.66 0.21

B. thuringiensis

2018 6.62
(1.38–16.50)

1643.06
(326.38–112702.92) 0.53 ± 0.13 0.05 1.08

2019 8.59
(2.17–20.90)

1921.61
(378.38–122921.23) 0.54 ± 0.13 0.35 1.41

2020 13.37
(4.77- 30.32)

1782.62
(403.77–55643.17) 0.60 ± 0.13 0.31 2.19

Spinosad

2018 0.030
(0.01–0.06)

2.12
(0.68–21.92) 0.69 ± 0.13 1.87 3.37

2019 0.031
(0.01–0.07)

4.26
(1.05–108.98) 0.60 ± 0.13 0.32 3.48

2020 0.025
(0.01–0.05)

1.51
(0.52–12.23) 0.72 ± 0.13 0.68 2.81

a: LC50: concentration causing 50% mortality. b: LC90: concentration causing 90% mortality. c: RR: LC50 value of
the field strain/LC50 value of the susceptible strain.

As shown in Table 6, the level of α-esterase, expressed as folds of that of the susceptible
strain, was reduced to 0.96-, 0.92- and 0.79-fold in Fayoum strain; to 0.89-, 0.85- and 0.88-fold
in Beheira strain; and to 0.81-, 0.92- and 0.93-fold in the Kafr El-Sheikh strain over the three
seasons, respectively. A similar reduction was also recorded for the level of β-esterases
enzyme. In addition, AchE significantly decreased in the Beheira strain in all seasons, but
only in 2020 for the Fayoum strain, and in 2018 for the Kafr El-Sheikh strain.
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Table 6. Carboxylesterases and AChE enzyme activity (mean ± SE) in field strains of Spodoptera
littoralis over three consecutive seasons (2018 to 2020).

Strain

Mean ± SE

Carboxylesterases
AChE

(µg AchBr/min/mg of Protein)α-Esterases
(µg α-Naphthol/min/mg of Protein)

β-Esterases
(µg β-Naphthol/min/mg of Protein)

2018 2019 2020 2018 2019 2020 2018 2019 2020

Susceptible 25.36 ± 0.55 18.06 ± 0.39 9.63 ± 0.21

Fayoum 24.56 ± 0.32 23.41 ± 0.73 20.25 ± 0.59
*** 17.49 ± 0.23 16.67 ± 0.52 14.42 ± 0.42

*** 9.33 ± 0.12 8.89 ± 0.27 7.69 ± 0.22
***

Beheira 22.80 ± 0.18
**

21.80 ± 0.11
**

22.49 ± 0.18
*

16.23 ± 0.13
**

15.52 ± 0.08
**

16.01 ± 0.13
*

8.66 ± 0.06
**

8.28 ± 0.04
** 8.54 ± 0.07 *

Kafr
El-Sheikh

20.65 ± 0.39
*** 23.48 ± 0.22 23.73 ± 0.61 14.70 ± 0.28

*** 16.72 ± 0.16 16.89 ± 0.43 7.84 ± 0.15
*** 8.92 ± 0.08 9.01 ± 0.23

F 28.85 9.28 17.32 28.85 9.28 17.32 28.85 9.28 17.32
p-value 0.0001 0.0055 0.0007 0.0001 0.0055 0.0007 0.0001 0.0055 0.0007

* Significantly different at p = 0.05. ** Significantly different at p = 0.01. *** Significantly different at p < 0.001

Table 7. MFO and GST enzyme activity (Mean±SE) in field strains of Spodoptera littoralis over three
consecutive seasons (2018 to 2020).

Strain

Mean ± SE

MFO
(mg/mg of Protein)

GST
(mmol/min/mg of Protein)

2018 2019 2020 2018 2019 2020

Susceptible 1.47 ± 0.03 2.23 ± 0.04
Fayoum 1.42 ± 0.01 1.35 ± 0.04 1.17 ± 0.03 *** 2.16 ± 0.02 2.06 ± 0.06 1.78 ± 0.05 ***
Beheira 1.32 ± 0.01 ** 1.26 ± 0.006 ** 1.30 ± 0.01 * 2.01 ± 0.01 ** 1.92 ± 0.01 ** 1.98 ± 0.01 *

Kafr El-Sheikh 1.19 ± 0.02 *** 1.36 ± 0.01 1.37 ± 0.03 1.82 ± 0.03 *** 2.07 ± 0.02 2.09 ± 0.05
F 28.85 9.28 17.32 28.85 9.28 17.32

p-value 0.0001 0.0055 0.0007 0.0001 0.0055 0.0007

* Significantly different at p = 0.05. ** Significantly different at p = 0.01.*** Significantly different at p < 0.001.

As shown in Table 7, the levels of MFO and GST significantly decreased in the Beheira
strain in all seasons. MFO levels ranged from 1.26 to 1.32 mg/mg of protein, while GST
ranged from 1.92 to 2.01 mmol/min/mg of protein. Similarly, the level of both enzymes
significantly decreased, but only in 2020 for the Fayoum strain and in 2018 for the Kafr
El-Sheikh strain.

4. Discussion

The indiscriminate use of conventional and newer insecticides has caused the develop-
ment of resistance to almost all kinds of insecticides in the Noctuidae species [7,12,13,38–41].
According to the Egyptian Agricultural Pesticides Committee, EAPC (2022), several groups
of biochemical or chemical insecticides, such as organophosphorus, pyrethroids, insect
growth regulators (IGRs), diamides, oxadiazin, spinosyns, emamectin benzoate and
B. thuringiensis, are used for S. littoralis management. Hence, insecticide resistance has
developed in this insect pest [7,42,43]. Consequently, the history of insect resistance to vari-
ous insecticides, including S. littoralis, should be studied to monitor the tolerance changes
and detect any problems that may occur. In addition, continuous monitoring of the insect
strains for changes in resistance frequencies is needed for the development of effective
management strategies [44]. Therefore, monitoring insecticides is considered a pre-requisite
in IPM programs [45], and becomes a remarkable aspect of resistance management [3].
The present study investigated the susceptibility of the fourth instar larvae of three field
strains of S. littoralis to six insecticides with different modes of action over three consecutive
seasons (2018–2020). To explore the mechanism of resistance, if it existed, the activities of
the relevant enzymes were also studied.
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The results showed that bioinsecticides were more toxic to S. littoralis than conven-
tional ones. Spinosad had the highest toxicity, with an LC50 value of 0.0089 mg/L. These
results are congruent with previous studies by Ahmed et al. [8] and Tamilselvan et al. [46],
who found that spinosad and other bioinsecticides, such as emamectin benzoate and
spinotram, were more toxic to S. littoralis and Plutella xylostella (L.) than conventional
insecticides. Based on the resistance ratio, all field strains developed resistance to spinosad
compared with other insecticides. In line with this finding, resistance to spinosad has been
reported in several insect pests, including S. littoralis [7,8], S. litura [19], S. exigua [14] and
P. xylostella [46]. On the contrary, a slight level of resistance was developed to chlorpyrifos
(organophosphorus) and methomyl (carbamates) in some cases, but in others, no resistance
was found. These findings can be attributed to the fact that in Egypt, bioinsecticides,
including spinosad and newer chemical insecticides, have been extensively used due to
the health and environmental issues associated with conventional ones. The fluctuation of
resistance levels recorded in this study can be connected with the type of insecticides used
and the sequence of usage in each governorate.

Metabolic resistance relies on enzymatic systems that can detoxify and/or sequester
toxic molecules, interrupting or decreasing its harmful effect [47]. Mostly, metabolic
resistance, which involves three major families of enzymes (CarE, MFO and GST), is one
of the most common defense mechanisms in insects [7,25,48,49]. The point mutation at
the target site is involved in the insect resistance mechanism, like that of AChE, which is
involved in organophosphates and carbamates insecticides’ resistance [50]. Therefore, the
activity of these enzymes together with AChE was determined in the three field strains of
S. littoralis to assess their roles in resistance and to identify resistance mechanisms for the
sake of enlightened pest management. In this regard, our results revealed, unexpectedly,
a reduction in the activities of all enzymes in field strains. This might suggest that the
resistance of these strains to the tested insecticides is not always associated with higher
detoxification activity, but is, rather, related to a different mechanism. These results are
not consistent with those of Hu et al. [51] and Zhang et al. [52], who found that the
overexpression of CarE and GST was related to resistance to insecticides. In fact, most of
the resistance to insecticides is associated with an increase in the activity of detoxification
enzymes [7,25,53,54]. However, modification of the target site could lead to insensitivity of
insect pests to insecticides [55]. In addition, factors such as UV light, sunlight, photolysis
in water and shelf life could affect the insecticide efficiency and delay the development of
the resistance/prevent it from occurring [56]. Thus, we speculate that the inconsistency
with other studies might be due to the different species of insect, type of insecticide, time of
sampling or method of treatment.

Moreover, studies have confirmed cross-resistance between spinosad and newer chem-
ical insecticides [46,52,57]. Cross-resistance between different groups of insecticides might
be due to metabolic detoxification mechanisms [58]. Therefore, it is necessary to develop
effective management plans to delay any resistance development.

5. Conclusions

In summary, our study provides evidence of very low to non-resistance development
by S. littoralis to some commonly used insecticides in some Egyptian governorates due
to the successful resistance management strategies used in Egypt. However, monitoring
resistance to insecticides is an important aspect of insecticide rotation and their mixed
application. Thus, regular follow up is needed to specify and confirm the mechanisms by
which S. littoralis develops resistance to the tested insecticides, in order to avoid resistance
problems and pest control failure.
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