Graphical solution using smith chart:

1)a) Shunt S.C. stub:

- i) Allocate Z_L.
- ii) Rotate the Z_L point to find Y_L point. (through the constant Γ -circle).
- iii) Move from Y_L on the constant Γ -circle till hitting the (r=1) circle at two points (Y_1, Y_2) towards the generator.
- iv) Determine the value of $d_1 \& d_2$ where $d_i = d_{Y_i} d_{Y_L}$ on the WTG scale.
- v) Determine the value of 'L' (stub length) by starting on the smith chart at $y=\infty$ (SC) and moving along the outer edge of the chart to the "-by₁" & "by₂" on the WTG scale. (L_i = L_{bvi} 0.25 Λ). (+ve)

1)b) Shunt O.C. stub:

- > From i to iv same as above
- V) Determine the value of 'L' (stub length) by starting on smith chart at y=0 (OC) & moving along the outer edge of the chart to "-by₁" & "by₂" on the WTG scale. ($L_i = L_{bvi} 0$).

2)a) Series S.C. stub:

- i) Allocate Z_L.
- ii) Draw the constant Γ -circle.
- iii) Move from the Z_L point on the constant Γ -circle till hitting the (r=1) at two points (Z_1,Z_2) towards the generator.
- iv) Determine the value of $d_1 \& d_2$ where $d_i = d_{z_i} d_{Z_L}$ on the WTG scale.
- v) Determine the value of 'L' (stub length) by starting on smith chart at (z=o) (SC) & moving along the outer edge of the chart to the "- X_{z1} " & "- X_{z2} " on the WTG scale. (L_i = L_{xzi} 0). (+ve).

2)b) Series O.C. stub:

- > From i to iv same as above.
- V) Determine the value of 'L' (stub length) by starting on the smith chart at $Z=\infty$ (OC) and moving along the outer edge & the chart to the "- X_{z1} " & "- X_{z2} " on the WTG scale. ($L_i = L_{xzi} 0.25 Å$).

> Notes:

- 1) In shunt stub case, we consider smith chart as admittance chart so, the const. Γ-circle intersects the "1+jb" circle at two points.
- 2) In series stub case, we consider smith chart as impedance chart so, the const. Γ -circle intersects the "1+jx" circle at two points.
- 3) If the stub is made of section of " $\frac{a}{c}$ Z₀" TL (not "Z₀" TL) where a & c are constants (a, c \neq 0). Then assume that Z'₀ = $\frac{a}{c}$ Z₀ & Y'₀ = $\frac{c}{a}$ Z₀ and the values of required normalized stub impedances or admittances will change.
- 4) Series stubs are very difficult to manufacture using micro-strip lines.
- 5) As 'd' & 'L' of the stub are shorter this lead to better bandwidth. as the frequency variation of the match decreases.