EDITORIAL
5829  Role of tissue microenvironment resident adipocytes in colon cancer
Tabuso M, Homer-Vanniasinkam S, Adya R, Arasaradnam RP

REVIEW
5836  Ophthalmic manifestations in patients with inflammatory bowel disease: A review
Troncoso LL, Biancardi AL, de Moraes Jr HV, Zaltman C

5849  Laparoscopic appendectomy for acute appendicitis: How to discourage surgeons using inadequate therapy

5860  Long non-coding RNAs in hepatocellular carcinoma: Potential roles and clinical implications
Niu ZS, Niu XJ, Wang WH

MINIREVIEWS
5875  Nano albumin bound-paclitaxel in pancreatic cancer: Current evidences and future directions

ORIGINAL ARTICLE
Basic Study
5887  Comparison between tocotrienol and omeprazole on gastric growth factors in stress-exposed rats
Nur Azlina MF, Qodriyah HMS, Chua KH, Kamisah Y

5895  (-)-Epigallocatechin-3-gallate enhances poly I:C-induced interferon-λ1 production and inhibits hepatitis C virus replication in hepatocytes
Wang YZ, Li JL, Wang X, Zhang T, Ho WZ

5904  Effects and mechanism of adenovirus-mediated phosphatase and tension homologue deleted on chromosome ten gene on collagen deposition in rat liver fibrosis
Xie SR, An JY, Zheng LB, Huo XX, Guo J, Shih D, Zhang XL

Retrospective Study
5913  Integrating TYMS, KRAS and BRAF testing in patients with metastatic colorectal cancer
Clinical Trials Study

5925 Characterizing gastrointestinal stromal tumors and evaluating neoadjuvant imatinib by sequencing of endoscopic ultrasound-biopsies

Observational Study

5936 Novel predictors for lymph node metastasis in submucosal invasive colorectal carcinoma
Yim K, Won DD, Lee IK, Oh ST, Jung ES, Lee SH

5945 Changes with aging in gastric biomarkers levels and in biochemical factors associated with Helicobacter pylori infection in asymptomatic Chinese population
Shan JH, Bai XJ, Han LL, Yuan Y, Sun XF

Prospective Study

5954 Modified Helicobacter test using a new test meal and a 13C-urea breath test in Helicobacter pylori positive and negative dyspepsia patients on proton pump inhibitors
Tepeš B, Malfertheiner P, Labenz J, Aygen S

5962 Real time endoscopic ultrasound elastography and strain ratio in the diagnosis of solid pancreatic lesions

5969 Efficacy and safety of sofosbuvir and daclatasvir in treatment of kidney transplantation recipients with hepatitis C virus infection
Xue Y, Zhang LX, Wang L, Li T, Qu YD, Liu F

Randomized Controlled Trial

5977 New botanical drug, HL tablet, reduces hepatic fat as measured by magnetic resonance spectroscopy in patients with nonalcoholic fatty liver disease: A placebo-controlled, randomized, phase II trial
Jeong JY, Sohn JH, Baek YH, Cho YK, Kim Y, Kim H

Randomized Clinical Trial

5986 Randomized clinical trial comparing fixed-time split dosing and split dosing of oral Picosulfate regimen for bowel preparation
Jun JH, Han KH, Park JK, Seo HL, Kim YD, Lee SJ, Jun BK, Hwang MS, Park YK, Kim MJ, Cheon GJ

META-ANALYSIS

5994 Systematic review and meta-analysis of colon cleansing preparations in patients with inflammatory bowel disease
Restellini S, Kherad O, Bessissow T, Ménard C, Martel M, Taheri Tanjani M, Lakatos PL, Barkun AN
<table>
<thead>
<tr>
<th>Issue</th>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6007</td>
<td>Letters to the Editor: Comment on “Efficacy and adverse events of cold vs hot polypectomy: A meta-analysis”</td>
<td>Sun HH, Huang SL, Bai Y</td>
</tr>
</tbody>
</table>
ABOUT COVER

Editorial board member of *World Journal of Gastroenterology*, Mitsushige Sugimoto, MD, PhD, Associate Professor, Division of Digestive Endoscopy, Shiga University of Medical Science Hospital, Otsu 520-2192, Japan

AIMS AND SCOPE

*World Journal of Gastroenterology* (*WJG*) is a peer-reviewed open access journal. *WJG* was established on October 1, 1995. It is published weekly on the 7th, 14th, 21st, and 28th each month. The *WJG* Editorial Board consists of 1375 experts in gastroenterology and hepatology from 68 countries.

The primary task of *WJG* is to rapidly publish high-quality original articles, reviews, and commentaries in the fields of gastroenterology, hepatology, gastrointestinal endoscopy, gastrointestinal surgery, hepatobiliary surgery, gastrointestinal oncology, gastrointestinal radiation oncology, gastrointestinal imaging, gastrointestinal interventional therapy, gastrointestinal infectious diseases, gastrointestinal pharmacology, gastrointestinal pathophysiology, gastrointestinal pathology, evidence-based medicine in gastroenterology, pancreatology, gastrointestinal laboratory medicine, gastrointestinal molecular biology, gastrointestinal immunology, gastrointestinal microbiology, gastrointestinal genetics, gastrointestinal translational medicine, gastrointestinal diagnostics, and gastrointestinal therapeutics. *WJG* is dedicated to become an influential and prestigious journal in gastroenterology and hepatology, to promote the development of above disciplines, and to improve the diagnostic and therapeutic skill and expertise of clinicians.

INDEXING/ABSTRACTING

*World Journal of Gastroenterology* (*WJG*) is now indexed in Current Contents®/Clinical Medicine, Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports®, Index Medicus, MEDLINE, PubMed, PubMed Central and Directory of Open Access Journals. The 2017 edition of Journal Citation Reports® cites the 2016 impact factor for *WJG* as 3.365 (5-year impact factor: 3.176), ranking *WJG* as 29th among 79 journals in gastroenterology and hepatology (quartile in category Q2).

FLYLEAF

I-IX

Editorial Board

EDITORS FOR THIS ISSUE

Responsible Assistant Editor: Xiang Li
Responsible Electronic Editor: Fen-Fen Zhang
Proofing Editor-in-Chief: Liao Sheng Me

NAME OF JOURNAL

World Journal of Gastroenterology

ISSN

ISSN 1007-9327 (print)
ISSN 2219-2840 (online)

LAUNCH DATE

October 1, 1995

FREQUENCY

Weekly

EDITORS-IN-CHIEF

Damian Garcia-Olmo, MD, PhD, Doctor, Professor, Surgeon, Department of Surgery, Universidad Autonoma de Madrid; Department of General Surgery, Fundacion Jimenez Diaz University Hospital, Madrid 28040, Spain

Stephen C Strom, PhD, Professor, Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm 141-86, Sweden

Andrzej S Tarnawski, MD, PhD, DSc (Med), Professor of Medicine, Chief Gastroenterology, VA Long Beach Health Care System, University of California, Irvine, CA, 9061 E. Seventh Str., Long Beach, CA 90822, United States

EDITORIAL BOARD MEMBERS

All editorial board members resources online at http://www.wjgnet.com/1007-9327/editorialboard.htm

EDITORIAL OFFICE

Jin-Lei Wang, Director
Yuan Qi, Vice Director
Ze-Mao Gong, Vice Director
*World Journal of Gastroenterology*
Baishideng Publishing Group Inc
7901 Stoneridge Drive, Suite 501, Pleasanton, CA 94588, USA
Telephone: +1-925-2238242
Fax: +1-925-2238243
E-mail: editorialoffice@wjgnet.com

PUBLISHER

Baishideng Publishing Group Inc
7901 Stoneridge Drive, Suite 501, Pleasanton, CA 94588, USA
Telephone: +1-925-2238242
Fax: +1-925-2238243
E-mail: bpgoffice@wjgnet.com
Help Desk: http://www.ifjpublishing.com/helpdesk

COPYRIGHT

© 2017 Baishideng Publishing Group Inc. Articles published by this Open-Access journal are distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non-commercial and is otherwise in compliance with the license.

SPECIAL STATEMENT

All articles published in journals owned by the Baishideng Publishing Group (BPG) represent the views and opinions of their authors, and not the views, opinions or policies of the BPG, except where otherwise explicitly indicated.

INSTRUCTIONS TO AUTHORS

Full instructions are available online at http://www.wjgnet.com/bpg/guidelines/204

ONLINE SUBMISSION

http://www.ifjpublishing.com

http://www.wjgnet.com
Real time endoscopic ultrasound elastography and strain ratio in the diagnosis of solid pancreatic lesions


Conflict-of-interest statement: The authors of this manuscript having no conflicts of interest to disclose.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Correspondence to: Shaaima Elkholy, MD, Lecturer, Department of Internal Medicine, Faculty of Medicine, Cairo University, Kasr Alainy street Cairo, Cairo 11311, Egypt. shaaima.elkholy@cu.edu.eg

Received: February 26, 2017
Peer-review started: February 28, 2017
First decision: April 11, 2017
Revised: May 10, 2017
Accepted: June 9, 2017
Article in press: July 9, 2017
Published online: August 28, 2017

Abstract

AIM
To evaluate the accuracy of the elastography score combined to the strain ratio in the diagnosis of solid pancreatic lesions (SPL).

METHODS
A total of 172 patients with SPL identified by endoscopic
ultrasound were enrolled in the study to evaluate the efficacy of elastography and strain ratio in differentiating malignant from benign lesions. The semi quantitative score of elastography was represented by the strain ratio method. Two areas were selected, area (A) representing the region of interest and area (B) representing the normal area. Area (B) was then divided by area (A). Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy were calculated by comparing diagnoses made by elastography, strain ratio and final diagnoses.

RESULTS
SPL were shown to be benign in 49 patients and malignant in 123 patients. Elastography alone had a sensitivity of 99%, a specificity of 63%, and an accuracy of 88%, a PPV of 87% and an NPV of 96%. The best cut-off level of strain ratio to obtain the maximal area under the curve was 7.8 with a sensitivity of 92%, specificity of 77%, PPV of 91%, NPV of 80% and an accuracy of 88%. Another estimated cut off strain ratio level of 3.8 had a higher sensitivity of 99% and NPV of 96%, but with less specificity, PPV and accuracy 53%, 84% and 86%, respectively. Adding both elastography to strain ratio resulted in a sensitivity of 98%, specificity of 77%, PPV of 91%, NPV of 95% and accuracy of 92% for the diagnosis of SPL.

CONCLUSION
Combining elastography to strain ratio increases the accuracy of the differentiation of benign from malignant SPL.

Key words: Endoscopic Ultrasound; Elastography; Strain Ratio; Real Time; Pancreatic lesions

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: This prospective study included 172 patients with solid pancreatic lesions (SPL) to evaluate the value of combining the elastography score to strain ratio for differentiating benign from malignant lesions. Adding both elastography to strain ratio resulted in a sensitivity of 98%, specificity of 77%, positive predictive value (PPV) of 91%, negative predictive value (NPV) of 95% and accuracy of 92% for the diagnosis of SPL. The best cut-off level of strain ratio was 7.8 with a sensitivity of 92%, specificity of 77%, PPV of 91%, NPV of 80% and an accuracy of 88%. So, adding both diagnostic tools increases the yielding of diagnosis.
Okasha H et al. Elastography and strain ratio in SPL

Table 1 Location of the Solid pancreatic Lesions

<table>
<thead>
<tr>
<th>Location of pancreatic lesions</th>
<th>Number of cases = 172</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head of the pancreas</td>
<td>118</td>
</tr>
<tr>
<td>Uncinate process</td>
<td>7</td>
</tr>
<tr>
<td>Body of the pancreas</td>
<td>22</td>
</tr>
<tr>
<td>Tail of the pancreas</td>
<td>4</td>
</tr>
<tr>
<td>Diffuse involvement (pan-pancreatic lesion)</td>
<td>21</td>
</tr>
</tbody>
</table>

Table 2 Final diagnosis of solid pancreatic lesions

<table>
<thead>
<tr>
<th>Nature of the lesion</th>
<th>Final diagnosis</th>
<th>Number of cases = 172</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benign lesions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(49 cases)</td>
<td>Pancreatitis</td>
<td>49</td>
</tr>
<tr>
<td>-Chronic pancreatitis</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>-Autoimmune pancreatitis</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Malignant lesions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(123 cases)</td>
<td>Ductal adenocarcinoma</td>
<td>97</td>
</tr>
<tr>
<td>-Mucinous neoplasm</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>-Neuroendocrine tumors</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>-Lymphoma</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>-Metastasis</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Pentax EG3830UT (HOYA Corporation, PENTAX Lifecare Division, Showanomori Technology Center, Tokyo, Japan) connected to a Hitachi EUB-7000 HV ultrasound unit (Hitachi Medical Systems, Tokyo, Japan). All examinations were performed by one endosonographer. For EUS-FNA biopsies, we used the Cook needle 22G (Echotip®; Wilson-Cook, Winston Salem, NC, United States). Elastography was applied to evaluate the SPL. Elastography is the sound wave technique to measure tissue deformation in response to compression. Theoretically, malignant lesions are harder than inflammatory ones. The hardness of the lesion is reflected by the degree of deformation represented by a color map (red-green-blue colors represent soft to hard tissue, respectively). Quantitative scores and strain ratios were determined during the procedure. EUS-FNA was performed after the elastography.

Qualitative score

“Elastic score” reported by Giovannini et al.[10] was used. A score of 1 was defined as homogeneous soft tissue (green) and interpreted as normal tissue. A score of 2 was given to heterogeneous soft tissue (green, yellow, and red), and interpreted as fibrosis or inflammation as shown in Figure 1. A score of 3 represented mixed hard and soft tissues (mixed colors) or a honeycombed elastography pattern, interpreted as indeterminate for malignancy as shown in Figures 2 and 3. A score of 4 was given for hard (blue) lesions with a soft (green) central area, interpreted as malignant, hypervascularized lesions. Finally, a score of 5 represents predominantly hard (blue) lesions with dispersed heterogenic soft (green, red) areas, interpreted as advanced malignant lesions with necrotic areas as shown in Figure 4.

The semi quantitative score of elastography was represented by the strain ratio method. Two areas were selected, area (A) representing the region of interest and area (B) representing the normal area. Area (B) was then divided by area (A). For pancreatic lesions with a homogeneous pattern of elasticity, area A was chosen from any region, but in heterogeneous regions, area A was chosen to cover as much heterogeneous area as possible. Both areas were manually selected by these criteria. The means of strain ratios were calculated and used as final results for each patient as shown in Figures 5 and 6. Subsequently, the best cut-off value was selected from the receiver operating characteristic (ROC) curve and was used for the calculation of diagnostic value. The best cut-off value of strain ratio was also combined with the results of elastography for the calculation of diagnostic value.

Statistical analysis

Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy were calculated by comparing diagnoses made by elastography, strain ratio and final diagnoses.

The final diagnosis of the SPL was obtained from the positive cytopathological examination of aspirate taken by EUS-FNA, the excisional biopsy of surgically removed tumors, and the presence of metastases or the follow up of benign lesions for at least one year.

RESULTS

From January 2013 to April 2016, 172 patients with pancreatic lesions were enrolled in this study. There were 120 males and 52 females with mean age of 55.7 years. The site, final diagnosis of pancreatic lesions, and elastography score are presented in Tables 1-3.

Scores 1 and 2 were considered benign while scores 3 to 5 were considered malignant. Elastography alone had a sensitivity of 99%, specificity of 63%, PPV of 87%, NPV of 96%, and accuracy of 88% (Table 4).

The mean value of the strain ratio for benign lesions is 5.58 while the mean value for malignancy is 31.25; this difference was statistically significant at a p value of 0.01.

Based on the results of the ROC curve that was used for analysis, the best cut-off level of strain ratio to obtain the maximal area under the curve was 7.8 with a sensitivity of 92%, specificity of 77%, PPV of 91%, NPV of 80% and accuracy of 88%. Another cut off level of strain ratio was calculated at a level of 3.8 and demonstrated very high sensitivity (99%) and NPV (96%), but less specificity (53%), PPV (84%), and accuracy (86%). Adding elastography to strain ratio resulted in a sensitivity of 98%, specificity of 77%, PPV of 91%, NPV of 95% and accuracy of 92% for the diagnosis of SPL (Table 4).

DISCUSSION

The percentage of benign SPL in our study is 28%, which is similar to a study carried out by Pradermchai
EUS-FNA also has many drawbacks, including the need for multiple needle passes to obtain an adequate sample, iatrogenic complications\(^{15}\), a learning curve and the need to evaluate many cases to obtain better efficacy. These drawbacks raised the need to develop other techniques for the diagnosis of SPL with fewer complications and better efficacy. Dawwas and colleagues reported a sensitivity of 100% for EUS elastography but with a very low specificity of 16.7%\(^{16}\). This was in contrast to previous published studies\(^{17,18}\) and was not in concordance with our study that showed a specificity of 63%. Still, a problem appeared when using the elastic score due to its subjectivity. In our study, 36.7% (18/49) of patients with chronic pancreatitis had scores of 3 and 5 which is supposed to indicate malignancy. This may be surrounding area\(^{14}\).

EUS-FNA also has many drawbacks, including the need for multiple needle passes to obtain an adequate sample, iatrogenic complications\(^{15}\), a learning curve and the need to evaluate many cases to obtain better efficacy. These drawbacks raised the need to develop other techniques for the diagnosis of SPL with fewer complications and better efficacy. Dawwas and colleagues reported a sensitivity of 100% for EUS elastography but with a very low specificity of 16.7%\(^{14}\). This was in contrast to previous published studies\(^{17,18}\) and was not in concordance with our study that showed a specificity of 63%. Still, a problem appeared when using the elastic score due to its subjectivity. In our study, 36.7% (18/49) of patients with chronic pancreatitis had scores of 3 and 5 which is supposed to indicate malignancy. This may be

### Table 3 Qualitative analysis by elastography distribution

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Score 1</th>
<th>Score 2</th>
<th>Score 3</th>
<th>Score 4</th>
<th>Score 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatitis</td>
<td>6</td>
<td>25</td>
<td>12</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Chronic pancreatitis</td>
<td>6</td>
<td>21</td>
<td>8</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Autoimmune pancreatic</td>
<td>-</td>
<td>4</td>
<td>4</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Ductal adenocarcinoma</td>
<td>-</td>
<td>-</td>
<td>28</td>
<td>-</td>
<td>69</td>
</tr>
<tr>
<td>Mucinous neoplasm</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>19</td>
</tr>
<tr>
<td>Neuroendocrine tumors</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Metastasis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

### Table 4 Diagnostic values of elastography and strain ratio

<table>
<thead>
<tr>
<th></th>
<th>Elasticity score 7.8</th>
<th>SR 3.8</th>
<th>Elasticity score and SR 7.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>99%</td>
<td>92%</td>
<td>99%</td>
</tr>
<tr>
<td>Specificity</td>
<td>63%</td>
<td>77%</td>
<td>53%</td>
</tr>
<tr>
<td>PPV</td>
<td>87%</td>
<td>91%</td>
<td>84%</td>
</tr>
<tr>
<td>NPV</td>
<td>96%</td>
<td>80%</td>
<td>96%</td>
</tr>
<tr>
<td>Accuracy</td>
<td>88%</td>
<td>88%</td>
<td>86%</td>
</tr>
</tbody>
</table>

PPV: Positive predictive value; NPV: Negative predictive value.

Kongkam and colleagues\(^{12}\) that reported a percentage of 23 and is similar to a meta-analysis that presented a close figure of 26.5%\(^{15}\).

The diagnostic value of EUS-FNA has always been questioned due to the high false negative rates encountered; these rates can reach up to 15%-17%\(^{2,5}\). These false negative findings are manifested mostly in focal lesions in patients with chronic pancreatitis due to a similar hypoechoic pattern when compared to the

Figure 1 A patient with chronic pancreatitis showing heterogeneous soft tissue (green, yellow, and red), and interpreted as fibrosis or inflammation.

Figure 2 A patient with elasticity score 3 showing mixed hard and soft tissues (mixed colors) or a honeycombed elastography pattern, interpreted as indeterminate for malignancy.

Figure 3 A patient with autoimmune pancreatitis showing elasticity score 3.

Figure 4 A patient with advanced malignant lesions with necrotic areas (elasticity score 5) showing predominantly hard (blue) lesion with dispersed heterogenic soft (green) areas.

Figure 1 A patient with chronic pancreatitis showing heterogeneous soft tissue (green, yellow, and red), and interpreted as fibrosis or inflammation.
attributed to the presence of calcifications and fibrous strands, which increases the score. Additionally, 6 patients out of 40 with chronic pancreatitis scored 1 although this score is supposed to reflect normal pancreatic tissue. Considering that chronic pancreatitis is a well-known and established risk factor for the development of pancreatic cancer, SPL in patients with chronic pancreatitis is a worrisome feature that may indicate the development of malignancy on top of a chronic inflammatory condition. In a study of 373 patients with chronic pancreatitis, 4 of them developed pancreatic malignancy after a follow up period of 2 years. Fifty percent of neuroendocrine tumors scored 2 instead of 4 and 71% of ductal adenocarcinomas had scores of 4 instead of 3 according to the scale. This was similar to a study published by Itokawa and colleagues in which only 33% of neuroendocrine tumors were scored 4 and 22% had a score of 1. In our study, the 2 cases with neuroendocrine tumors were scored as 3 and 5 not 4, which may explain why none of our cases had an elasticity score of 4. In a study done by Giovannini et al, Sixteen point one of the lesions that had scores of 1 or 2 were adenocarcinoma. This renders elastography less specific although it has high sensitivity in our study sensitivity was 99% despite low specificity (63%).

As an elastography score is a very subjective tool and depends on the operator in most of the cases, another tool was added to increase its specificity to reach a better diagnosis. The strain ratio with different cut off levels was mentioned in many studies. We had a cut off level of 3.8 that had a sensitivity, specificity, PPV, NPV and accuracy of 99%, 53%, 84%, 86% and 96%, respectively. This was similar to the study done by Pradermchai Kongkam and colleagues that identified a cut off value of 3.17 that gave a better specificity of 66.7%, but lower values in sensitivity, PPV, NPV, and accuracy 86.2%, 89.3%, 60%, and 81.6%, respectively. In our study, the best cut off value to differentiate benign from malignant SPL was 7.8, it has a sensitivity of 92%, specificity of 77%, PPV of 91%, NPV of 80% and accuracy of 88%.

Other studies have analyzed the usefulness of quantitative EUS-elastography. Iglesias-Garcia et al published the strain ratio results of 86 consecutive patients with pancreatic solid lesions (49 adenocarcinomas, 27 inflammatory masses, 6 malignant neuroendocrine tumors, 2 metastatic oat cell lung cancers, 1 pancreatic lymphoma, and 1 pancreatic solid pseudopapillary tumor) and 20 controls. The strain ratio was significantly higher among patients with malignant pancreatic tumors than those with inflammatory masses. Normal pancreatic tissue showed a mean strain ratio of 1.68 (95%CI: 1.59-1.78). Inflammatory masses exhibited a strain ratio (mean 3.28; 95%CI: 2.61-3.96) that was significantly higher than that of the normal pancreas (P < 0.001), but lower than that of pancreatic adenocarcinoma (mean 18.12; 95%CI: 16.03-20.21) (P < 0.001). The highest strain ratio was found among endocrine tumors (mean 52.34; 95%CI: 33.96-70.71). The sensitivity and specificity of the strain ratio for the detection of pancreatic malignancies with a cut-off value of 6.04 were 100% and 92.9%, respectively, exceeding the accuracy obtained with qualitative elastography. Another publication retrospectively evaluated 109 patients with solid pancreatic masses using the same methodology. A total of 20 patients were diagnosed with chronic pancreatitis (6 without and 7 with focal inflammatory masses, and 7 with autoimmune pancreatitis), 72 were diagnosis with pancreatic cancer, 9 with pancreatic neuroendocrine tumors, and 8 with a normal pancreas. In the qualitative evaluation, all pancreatic cancers showed an intense blue coloration, whereas the inflammatory masses presented mixed colorations (green, yellow, and low-intensity blue). The mean strain ratio was 23.66 ± 12.65 for the inflammatory masses and 39.08 ± 20.54 for pancreatic cancer (P < 0.05). To increase the efficacy of the diagnosis of SPL, we combined elastography with the strain ratio level of 7.8 to have a sensitivity of 98%, a specificity of 77%, an accuracy of 92%, a PPV of 91% and an NPV of 95%.
and increased the accuracy compared to the use of each tool alone.

SPL should be investigated thoroughly to identify their type. The use of elastography combined with strain ratio increases the accuracy of differentiation between benign and malignant SPL.

COMMENTS

Background

Different real time elasticity scores were developed to distinguish between benign and malignant lesions, yet they are very subjective, which is an important drawback. Strain ratio is a semi-quantitative method developed by dividing the area of interest by the normal tissue to improve objectivity and reach a better diagnosis.

Research frontiers

Accurate diagnosis of the nature of pancreatic masses aids a lot in the proper management. In this study, there is a suggestion that adding strain ratio to elastography increase the accuracy of diagnosis.

Innovations and breakthroughs

The literature suggests that adding strain ration to elastography score would add to proper diagnosis and differentiation of pancreatic masses. This study suggests a new cut off value for strain ratio to differentiate between benign and malignant pancreatic lesions being 7.8.

Applications

The study adds additional evidence of using two non-invasive techniques being elastography score and strain ration for diagnosis solid pancreatic masses.

Terminology

Strain ratio: a quantitative method for proper diagnosing of the nature of lesions, calculated by dividing the area of interest by the normal tissue.

Peer-review

The authors have performed a good study, the manuscript is interesting.

REFERENCES

Okasha H et al. Elastography and strain ratio in SPL

19340900 DOI: 10.3748/wjg.15.1587

P- Reviewer: Sato H, Raisch KP S- Editor: Qi Y L- Editor: A E- Editor: Zhang FF