EVALUATION OF THE PROTECTIVE EFFICACY OF ANTICOCOIDIAL DRUGS AND VACCINE IN PREVENTION OF COCCIDIOSIS IN FLOOR REARED CHICKENS

Amer, M. M. *; Kutkat, M. Abd EL-A.**; Manal A. Ali*; K.M. El-Bayomi**; Zenab, M.S. Gerh** and Elmarakby, E. S. I.***

Poult. Dis. Depart., NRC. *Vet. Military Service

SUMMARY: Efficacy of feed additive anticoccidial drugs (Salinomycin 60 ppm or diclazuril 200 g/ton) and live vaccine “Coccivac®)” in prevention of experimental coccidiosis in floor reared chickens was conducted. Clinical signs and/or mortalities, weekly average body weight and feed intake, feed conversion rate (FCR), challenge test, oocyst count, and lesion score were taken as criteria for evolution. Salinomycin group showed FCR similar to diclazuril, while Vaccinated group showed lower rates than vaccinated medicated groups at the 3 weeks of life. Total FCR of Salinomycin and diclazuril were lower (2.4) than control negative (2.1) and diclazuril + vaccine (2.2) while vaccinated group and vaccinated Salinomycin medicated group are moderate in between. Vaccinated group and vaccinated medicated with Salinomycin showed lesions all parts of intestine at 29 and 33 day postvaccination, while in vaccinated medicated with diclazuril, lesions only in upper and middle part. Vaccinated non-medicated group 4 showed higher oocyst count/gm of drooping from the 4th dpv than vaccinated medicated groups 5 and 6. Birds received diclazuril and vaccine showed lower count than vaccine + Salinomycin group at all intervals. Following challenge Vaccinated groups show no marked signs or mortalities while examined droppings revealed presence of oocyst in concentration of 180/gram of faces at 2 dpc, 7680/g. at 8 dpc and 1200/g. at 11 dpc. Oocyst count/g in both challenged vaccinated and/or medicated chickens was lower than groups control negative groups. Birds received only vaccine induced higher and earlier oocyst shedding than those vaccinated and medicated. Our study pointed out that the use of coccidiostate in the ration of “Coccivac®) vaccinated floor reared chickens was of value in lowering of vaccinal reaction, oocyst shedding and improve FCR; where re-infection with vaccinal oocyst is possible.

Key words: Coccidiosis in chickens, Coccivac®, control, Prevention, anticoccidial drugs.
Corresponding Author E. mail: Profdramer@yahoo.com.

INTRODUCTION

As coccidial oocysts are ubiquitous and easily disseminated in the poultry house environment and have such a large reproduction potential, Inspire of the improvement in management and hygienic conditions in poultry production in recent years, outbreaks of coccidiosis still occur and it is very difficult to keep chickens coccidian free, especially under current intensive rearing conditions (Allen, 1986; Bhopal et al. 1992 and Saif et al. 2003). The use of anticoccidial feed additives over the past 50 years has played a major role in
the growth of poultry industry. These anticoccidials could be classified as chemicals have specific mode of action against parasite metabolism and polyether ionophore which act through general mechanisms of altering ion transport and disrupting osmotic balance (Jeffers, 1997). However the hazard use of anticoccidials and coccidiostates in poultry farms had been resulted in development of drug resistant Eimeria that threatened the economic stability of the poultry industry (Ruff and Danforth, 1966: Chapman, 1984, 1989, 1994 and 1998; Gisela- Grief, 1996; Li et al 2004 and William, 2006).

The work of Edgar had led to the introduction of the first commercial vaccine, “Coccivac” in the 1950’s, (Williams 2002) Live vaccines for coccidiosis control have been used to a limited degree by the poultry industry for about 50 years primarily to protect the breeder and layer flocks. Their effectiveness depends on the recycling of initially doses of oocyst and gradual build up of solid immunity (Shirley et al. 1995). In broilers the life vaccine required careful determination of the dose to avoid depressing effect on the growth performance (Abu-El Ezz et al. 2002). In comparison to the usage of anticoccidials, Coccivac® still used for control of disease in broilers, a new generation of attenuated precocious line vaccines was introduced.

Many workers recommended the usage of coccidiostates in combination with vaccine in prevention of coccidiosis (Edgar, 1958, Stuart, et al 1963 and Williams, 2002). Disease control strategies rely heavily on chemoprophylaxis and to a certain extent, live vaccines. Combined, these factors inflict tremendous economic losses to poultry industry. Increasing regulations on the use of anticoccidial drugs coupled with costs for developing new drugs and live vaccines (Dalloul and Lillehoj, 2006).

Our study planed to investigate Ability of Diclazuril and Salinomycin as anticoccidial drugs in control of vaccinal reaction “Coccivac®” in vaccinated floor reared chickens. Ability of vaccine and/or drugs to overcome challenge with field isolates.

MATERIALS and METHODS

CHICKS:
Two hundred and sixteen; 1-day old chicks (avian-43) from commercial hatchery were used. The used chickens were reared on straw deep litter in clean, disinfected and isolated floor pens.

RATION:
The chicks were feed on prepared ration according to the National Research Council (NRC, 1984). Ration without feed additives was given to the chicks ad libitum.

EIMERAL OOCYSTS:
Sporulated oocysts from field cases were purified. The collected oocysts were sporulated and passed in susceptible chicks 3 times. Virulence of the 3rd passage sporulated oocyst was tested according to Walelzky (1970), McDougald and scibert (1990) and FDA (1992). Sporulated oocysts were kept in 2.5% potassium dichromate in screw capped bottles at 4-8 C° till used for challenge test.
COCCIDIAL VACCINE:
Commercial coccidiosis vaccine (Coccivac®) Sheering plough, Animal Health Corporation, USA. Batch No.66/03 was used. This vaccine contained follows E. tenella, E.acervulina, E.brunetti, E.necatrix, E.praecox, E.maxima and E.mitis species. Coccivac is given to chicks at the 5th day of age by intra-ocular dropping after dilution in 30 ml of saline.

ANTICOCIDIAL DRUGS:
The used drugs were ZOX® (diclazuril) where each gram contains 5 mg diclazuril manufactured by Marcyrl Pharmaceutical Industries B.NO 51213. The drug was used in a dosage of 200 gm/ton. Coccifree® 12% (salinomycin granular 12%) manufactured by Almasria for industrials and trading Reg. no. 2089/2003 and used as instructed by the producer in dosage of 0.5 kg / ton to be finally 60 ppm.

OOCYST COUNT:
The collected fecal samples from experimental birds and intestinal contents were treated subjected to concentration Flotation method and oocysts were counted by McMaster.

CHALLENGE TEST:
From each group 10 birds were challenged with 50 000 sporulated oocyst from fied isolates intracroup. Challenged birds were kept under daily observation for clinical signs and mortality.

SAMPLES FOR OOCYST COUNT:
Freshly voided droppings from living and intestinal and cecal contents from sacrificed or dead chickens were collected and subjected for presence and oocyst count. Collection is done 3 times at 9th, 16th, and 23 day old, and 5 times at 2, 5, 7, 11 and 15 after challenge.

LESION SCORE:
Lesion scores were recorded according to the procedure described by Johnson and Reid (1970) was used for determining efficacy of vaccine or drug. From each group 3 chicks/ group were randomly taken and slaughtered at 5, 12, and 19 days after vaccination and 3, 6, 9, 12 days after challenge.

CHICKEN PERFORMANCE:
Weekly mean body weights gain, weekly feed intake and weekly as well as total feed intake were calculated according to Sainsbury (1984).

EXPERIMENTAL DESIGN:
At the 1st day of life the used chicks (216) were randomly divided into 6 equal groups (1-6); 36 chicks each. Chicks of group (1) were kept as negative control group while those of groups 2 and 5 as well as groups 3 and 6 were given medicated ration containing Salinomycin (600 ppm) as well as diclazuril (200 g/ton); respectively.

At the 5th day of life 3 chicks from each group were sacrificed and there intestine were examined to be still free from Eimerial infection. Rest of groups 4-6 (33 chicks/group) were vaccinated via eye drops with live attenuated coccidial vaccine. All chicken groups were daily observed for clinical signs and/or mortalities with weekly recording of average body weight and feed intake to calculate FCR (Table 1). Fresh droppings
and 3 scarified chicks from each group was collected at 4, 9, 19, 20, 25, 29, and 33 days post vaccination to be examined for Eimerial oocysts (Table 2) and intestinal lesion score (Table 3).

At 17 dpv (22 days of age), 10 chicks from each group were randomly collected and separately kept on floor pens. Each chicken was orally challenged with 0.2 ml containing 5×10^5 mixed sporulated oocysts. The challenged birds subjected to daily observation for clinical signs and/or mortalities. Three chicks were randomly collected from each challenged groups and their intestine were examined for lesion score (Table 4) and oocyst count (Table 5).

RESULTS

Average weight of 1-day old chicks was 41.67 gm. All chicken groups showed no detectable signs or mortalities during the 1st three weeks of age. Examined dropping samples of control negative and medicated groups revealed no detectable oocysts during the 1st 3 weeks of life.

Control negative FCR was 1.7, 1.9, 2.1 and 2.4 in the 1st, 2nd, 3rd and 4th week of age, respectively (Table1). Salinomycin group 2 is 1.8, 2.0, 2.3 and 3.0 as well as diclazuril gr 3 was 1.7, 2.0, 2.3 and 2.9 at the 4 weeks of life. Vaccine gr 3 was 1.7, 2.1, 2.2 and 2.8. While vaccinated medicated groups 5 and 6 are 1.8 and 1.9 at 1st week, 2.0 and 1.95 at 2nd week as well as 2.1 and 2.0 at the 3rd week. Total FCR of Salinomycin gr. 2 and diclazuril gr. 3 were the lowest (2.4) than control negative (2.1) and diclazuril + vaccine gr. 6 (2.2) while vaccine gr 4 and vaccine+ Salinomycin gr.5 are moderate in between. Oocyst output/gm of drooping (table2) reveal that all non vaccinated groups 1-3 showed undetected Eimerial oocysts in examined drooping samples, vaccinated non medicated group 4 showed higher oocyst count/gm of drooping from the 4th dpv than vaccinated medicated groups 5 and 6. Birds received diclazuril and vaccine showed lower count than vaccine + Salinomycin group at all intervals.

At the 2nd week at both vaccinated and Salinomycin medicated 23 dpv, vaccinated group show slight inflammation in upper and middle part of intestine, while vaccinated medicated with Salinomycin and diclazuril show slight inflammation in middle and lower part and in middle part respectively. At 25 dpv, vaccinated group show inflammation extend to lower part, while vaccinated medicated with diclazuril show no intestinal lesion. At both 29 and 33 dpv, vaccinated group and vaccinated medicated with Salinomycin show inflammation in all parts of intestine, while in vaccinated medicated with diclazuril, inflammation found in upper and middle part only (Table 3).

Examined intestine showed no detectable lesion score in all control negative and medicated groups while vaccinated and vaccinated medicated showed lesion in upper part of intestine in 1st, 2nd and 3rd week post-vaccination (table 3). Vaccinated groups show no marked signs or mortalities while examined droppings revealed presence of oocyst in concentration of 180/gram of faces at 2-dpc, 7680/gram at 8-dpc and 1200/gram at 11dpc. Oocyst count/gm (table 4) of
challenged chickens showing that both vaccinated and/or medicated groups showing lower count than control negative groups (1). Birds received only vaccine induced oocyst shedding higher than those vaccinated and medicated but vaccinated gr 4 showed early elimination of oocyst shedding at 11th dpc than all groups.

Challenged control groups, 2 birds were died at 5 dpc with sever hemorrhagic cecum with white foci. General signs start to appear at 3 dpc such as ruffling feathers, huddling to each other, off food and dropping tinged with blood was seen in the 5th dpc (Table 5).

2-dpc upper intestinal mucosa show slight inflammation. Medicated non-vaccinated groups showed no mortality, while at the 2-dpc inflammation found in upper and middle part of intestine and general signs start to appear. At the 8th dpc in all parts of intestine.

DISCUSSION

From the 1st reporting of coccidiosis as an enteric protozoal infection of young chickens *(Tyzzer, 1929)* until now, this affection causes major economic losses in intensive poultry farms *(Long et al, 1979 and Saif et al 2003)*. Many lines and strategies were planned to minimize the economic losses of such affection including hygienic measures, anticoccidial or coccidiostates drugs, and/or immunization with live attenuated vaccines.

Salinomycin in feed (60 ppm) and diclazuril (200g/ton) as recommended by producer and also by Abu El Ezz et al. *(2002), Li et al (2004) and Suo et al. (2006).* Coccivac vaccine was given through eye drop at the 5th day of age as previously used by *Rose and Long (1980).*

Control negative gr. 1, medicated diclazuril gr. 2 and Salinomycin gr. 3 and vaccinated groups (4-6) showed no detectable signs or mortalities during the 1st 3 weeks of age. These finding were also recorded in 9 trials of vaccinated birds by *Williams et a. (1999)* and *Bushel et al. (1992)* who stated that no coccidiosis was observed in vaccinated flocks and no lesions were apparent at p.m. While clinical signs of cecal coccidiosis appeared about 2 weeks after vaccination *(Lee 1987)* and coccidial lesions in chicks between 5-23 days after vaccination *(Williams and Andrews 2001)*.

Salinomycin in ration induced lower Total FCR (2,3) than all groups(table 1), while diclazuril FCR (2,1) in group 3 is similar to these of groups 5 and 6 and these results agree with Abu El Ezz et.al (2002) who stated that FCR improved in groups that received Salinomycin.Vaccinated group 4 showed total conversion rate at the 4th week of age similar to that of control negative (2.2) and this agree with Ruiz and Tamasaukas *(1995)* who proved no body weight difference was observed between vaccinated and non-vaccinated groups and *Youn et al (1998)* found that body weigh gains and groups immunized with coccidial vaccine and treated with anticoccidial drugs were moderately higher than groups just treated with anticoccidial drugs. Similar results were reported by Chapman and Johnson *(1992)* who investigated the presence of oocysts in the litter before and after withdrawal of Salinomycin from the
broiler feed and *Amer et al (2007)* who found that diclazuril was more effective in controlling of coccidiosis in experimentally infected chickens.

Examined intestine showed no detectable lesion score in all control negative and medicated groups; while vaccinated and vaccinated medicated showed lesion in upper part of intestine in 1st, 2nd and 3rd week post-vaccination (table 3), and this agree with *Youn et al (1998)* who stated that the lesion score of all groups immunized with coccidial vaccine and/or treated with anticoccidial drugs were milder than those of the infected control groups.

Vaccinated group show slight inflammation in upper part of intestine, while vaccinated medicated with Salinomycin and diclazuril show slight inflammation in upper and middle parts; respectively. This result was proved by *Williams and Andrews (2001)* as coccidial lesions found in chickens between 5 and 23 dpv, where lesions observed up to 5 dpv were identified as primary a host response to the 1st vaccinal life cycle and those observed from 6 days onwards were designated as primary or secondary host response to the second and subsequent vaccinal life cycle. *Williams (1994)* reported that vaccinated birds had mild coccidial lesions when sampled at 26, 33 or 40 days after vaccination. *Williams (2003)* reported the presence of gross lesions in commercially vaccinated chickens does not indicate vaccine failure unless performance is also adversely affected.

All non vaccinated groups 1-3 showed undetected oocysts in examined drooping samples (table5) and this indicate complete hygienic measures. Vaccinated non medicated group 4 showed higher oocyst count/gm of drooping from the 4th dpv than vaccinated medicated groups 5 and 6. Birds received diclazuril and vaccine showed lower count than Salinomycin group at all intervals.

Salinomycin in ration induced lower FCR if compared with other groups; on the other hand, FCR in diclazuril was similar to these of vaccinated medicated groups. Vaccinated group showed total FCR nearly similar to that of control negative and higher than vaccinated medicated ones. The result was similar to those of *Bednik et al. (1990)* who stated despite of presence of some coccidial oocysts in dropping after vaccination the weight gain and feed conversion of vaccinated chicks were about the same as those given coccidiostats. Vaccinated non-medicated group showed higher oocyst count/gm of drooping from the 4th dpv than vaccinated medicated groups.

Birds received only vaccine induced oocyst shedding higher than those vaccinated and medicated. The result indicated at reduction of oocyst output in the vaccinated groups (*Ruiz and tamasaukas 1995*). The detection of no signs, reduced lesion and mortalities in vaccinated challenged group was previously reported by *(Norton et al. 1989)*. Anticoccidial drugs with vaccine may be affecting level of immunity as it lowered effect of vaccine on intestinal lesions.

The detected signs and lesions in non vaccinated groups post challenge indicates pathogenicity of the used field isolates. The
Signs and lesions were indicative for establishment of infection (*FDA 1992 and Saif et al 2003*).

Our study pointed out that the use of coccidiostate in the ration of vaccinated birds with coccivac of value in lowering of post-vaccinal reaction, oocyst shedding as well as improve feed conversion rate especially in floor reared broiler chickens where re-infection with vaccinal oocyst is possible.

Table (1): Average weekly body weight, feed intake and FCR of medicated and/or vaccinated chicks.

<table>
<thead>
<tr>
<th>Gr. No.</th>
<th>Treatment</th>
<th>1(^{st}) week</th>
<th>2(^{nd}) week</th>
<th>3(^{rd}) week</th>
<th>4(^{th}) week</th>
<th>Total FCR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Feed intake/g.</td>
<td>Weight gain/g.</td>
<td>FCR</td>
<td>Feed intake/g.</td>
<td>Weight gain/g.</td>
</tr>
<tr>
<td>1</td>
<td>-ve</td>
<td>71.2</td>
<td>41.15</td>
<td>1.7</td>
<td>120.0</td>
<td>61.66</td>
</tr>
<tr>
<td>2</td>
<td>Sal.</td>
<td>69.7</td>
<td>37.57</td>
<td>1.8</td>
<td>123.3</td>
<td>60.0</td>
</tr>
<tr>
<td>3</td>
<td>Dicl.</td>
<td>60.6</td>
<td>34.28</td>
<td>1.7</td>
<td>125.0</td>
<td>61.83</td>
</tr>
<tr>
<td>4</td>
<td>Vacc.</td>
<td>63.6</td>
<td>36.93</td>
<td>1.7</td>
<td>126.7</td>
<td>60.0</td>
</tr>
<tr>
<td>5</td>
<td>Sal.+Vacc.</td>
<td>60.6</td>
<td>33.33</td>
<td>1.8</td>
<td>130.0</td>
<td>63.33</td>
</tr>
<tr>
<td>6</td>
<td>Dicl.+Vacc.</td>
<td>60.6</td>
<td>30.88</td>
<td>1.9</td>
<td>130.0</td>
<td>66.66</td>
</tr>
</tbody>
</table>

Table (2): oocyst count / gm of medicated and/or Eimeria vaccinated chickens.

<table>
<thead>
<tr>
<th>Gr. no.</th>
<th>Treatment</th>
<th>4 dpv</th>
<th>11 dpv</th>
<th>18 dpv</th>
<th>20 dpv</th>
<th>23 dpv</th>
<th>25 dpv</th>
<th>29 dpv</th>
<th>33 dpv</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-ve</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Sal.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Dicl.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Vacc.</td>
<td>120</td>
<td>340</td>
<td>1340</td>
<td>1460</td>
<td>1410</td>
<td>143</td>
<td>400</td>
<td>890</td>
</tr>
<tr>
<td>5</td>
<td>Sal.+Vacc.</td>
<td>110</td>
<td>210</td>
<td>1250</td>
<td>1410</td>
<td>1370</td>
<td>140</td>
<td>350</td>
<td>730</td>
</tr>
<tr>
<td>6</td>
<td>Dicl.+Vacc.</td>
<td>70</td>
<td>200</td>
<td>1170</td>
<td>1380</td>
<td>1380</td>
<td>139</td>
<td>355</td>
<td>680</td>
</tr>
</tbody>
</table>

Dpv = day post vaccination

Table (3): lesion score of medicated and/or Eimeria vaccinated chickens.
Table (4): lesion score of Eimeria challenged chickens groups.

<table>
<thead>
<tr>
<th>Gr. no.</th>
<th>Treat.</th>
<th>2 days post challenge</th>
<th>5 days post challenge</th>
<th>8 days post challenge</th>
<th>11 days post challenge</th>
<th>15 days post challenge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>u m l c</td>
</tr>
<tr>
<td>1</td>
<td>-ve</td>
<td>- - - -</td>
</tr>
<tr>
<td>2</td>
<td>Sal.</td>
<td>- - - -</td>
</tr>
<tr>
<td>3</td>
<td>Diel.</td>
<td>- - - -</td>
</tr>
<tr>
<td>4</td>
<td>Vacc.</td>
<td>+ - - -</td>
<td>+ + + +</td>
<td>+ + + +</td>
<td>+ + + +</td>
<td>+ + + +</td>
</tr>
<tr>
<td>5</td>
<td>Sal.+ Vacc.</td>
<td>+ - - -</td>
<td>+ + + +</td>
<td>+ + - -</td>
<td>+ + + +</td>
<td>+ + + +</td>
</tr>
<tr>
<td>6</td>
<td>Diel.+ Vacc.</td>
<td>+ - - -</td>
<td>+ + + +</td>
<td>+ + - -</td>
<td>+ + + +</td>
<td>+ + + +</td>
</tr>
</tbody>
</table>

Table (5): Average Oocyst count / gm of Eimeria challenged chickens.

<table>
<thead>
<tr>
<th>Gr. no.</th>
<th>Treatment</th>
<th>2 days post challenge</th>
<th>5 days post challenge</th>
<th>8 days post challenge</th>
<th>11 days post challenge</th>
<th>15 days post challenge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-ve</td>
<td>180</td>
<td>1630</td>
<td>7680</td>
<td>1200</td>
<td>2440</td>
</tr>
<tr>
<td>2</td>
<td>Sal.</td>
<td>50</td>
<td>850</td>
<td>1120</td>
<td>1320</td>
<td>560</td>
</tr>
<tr>
<td>3</td>
<td>Diel.</td>
<td>30</td>
<td>380</td>
<td>1100</td>
<td>1240</td>
<td>430</td>
</tr>
<tr>
<td>4</td>
<td>Vacc.</td>
<td>120</td>
<td>340</td>
<td>410</td>
<td>360</td>
<td>620</td>
</tr>
<tr>
<td>5</td>
<td>Sal.+ Vacc.</td>
<td>50</td>
<td>112</td>
<td>1230</td>
<td>1560</td>
<td>1330</td>
</tr>
<tr>
<td>6</td>
<td>Diel.+ Vacc.</td>
<td>30</td>
<td>110</td>
<td>1430</td>
<td>1550</td>
<td>1160</td>
</tr>
</tbody>
</table>
REFERENCES

FDA (1992): The efficacy of anticoccidial drugs and anticoccidial drug combinations in poultry. Center of vet.med.food and drug administration 7500 Standish place, Rockville, Maryland. USA.

Stuart, et al 1963

المخصص
في محاولة للتحكم في مرض الككسيريا في النجاح عن طريق لقاح الكوكسي فاك وحيد من رد الفعل بمضادات الكوكسيديا التي تستخدم لنفس .. (diclazuril 200 g/ton) وعقار الداكلازوريل (Salinomycin 60 ppm) يتم دراسة مدى كفاءة لقاح الكوكسي فاك في التحكم في مرض الكوكسيديا خلال تجربة أجريت على كنكيت عمر واحد يوم تم تربيةهم على الأرض (فرصة) حيث تم إعطاء التحصين عن طريق التنقيط في البطن على عمر 5 أيام.

تم أيضا دراسة مدى كفاءة عقار السالنيومسين وعقار الداكلازوريل في التحكم في مرض الكوكسيديا.

تم عمل دراسة بين المجموعات المختلفة من نسبة معدل الصفة التشريحي للمرضية (lesion score) المواد وذلك عند الحيوانات النائمة بعد التحصين وكذلك بعد الانتهاز.

وجدنا عند استخدام السالنيومسين إلى الحقيقة يكون معدل التحول أقل من باقي المجموعات بينما عند استخدام الداكلازوريل يكون معدل التحول ذي شكل مماثل للمجموعات التي تم تغذيتها مع وجود كوكسيديستات في الحقيقة كذلك وجد ان معامل التحول الفجوة للمجموعة التي تم تصميمها تتراوح مثل المجموعة السالبة.

المعدل المخترع (lesion score) في المجموعات المحصنة والمغناة على عرف وحيدى على كوكسيديستات وكذلك المجموعة المحصنة فقط كان يوجد في الزواج الطويل من الأمعاء في الأسابيع الثلاثة الأولى بعد التحصين.

المعدل المخترع في المجموعة المحصنة فقط كان أعلى من المجموعات المحصنة وتعتبر على أن كوكسيديستات وكذلك المجموعة المحصنة مع وجود الداكلازوريل في الحقيقة تتلافي حويصلات أقل من التي تتلقى على عينة بها سالنيومسين.

في المجموعات التي تلقى علاج فقط دون تحسين، لا يوجد نتائج بها ووجود انتهاز في الزواج الطويل والأوسط من الأمعاء وبدأت الأعراض في الظهور يومين من الانتهاز.

أوضحنا الدراسة أن استخدام العلاجات بالتحصين بالكوكسيديا في النجاح المربى على الأراضي كان له تأثيرات إيجابية من حيث الحد من الإفلاط التشريحي وتحسين الكفاءة التحويلية وتحديد أسباب العواصف في الزواج.