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Abstract

In this paper, we present a novel framework for deriving closed-form exact expressions for the symbol error

rate (SER) of α-µ fading channels assuming single-branch as well as equal-gain combining and maximal-ratio

combining receivers considering most of the commonly used modulation schemes. The proposed framework

is based on Mellin-transform and the SER expressions are given in terms of the univariate and multivariate

Fox H-functions, which have been recently extensively used in the literature. The proposed framework has the

following advantages over previous ones: first, it is straightforward and general, therefore it allows deriving the

exact SER expressions for cases untreated before in the literature, second, it enables direct derivation for the

asymptotic expressions of the SER for high average signal-to-noise ratios. To validate the obtained expressions,

we compare the results of the special case of Nakagami-m fading channel to those reported in the literature.

Furthermore, Monte Carlo simulations are conducted and their results are shown to perfectly match the analytic

expressions. Finally, the obtained asymptotic expressions for all the studied modulation schemes and diversity

receivers are shown to match the behavior of their corresponding exact values for a wide range of the SNR

values that are of practical interest.

Accepted for publication in IEEE Transactions on Vehicular Technology. Copyright c© 2014 IEEE. Personal use of this material is

permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending a request to

pubs-permissions@ieee.org.

Moataz M. H. El Ayadi is with the Department of Engineering Mathematics and Physics, Faculty of Engineering, Cairo University,

Giza 12613, Egypt. Email: moataz@eng.cu.edu.eg.

Mahmoud H. Ismail is with the Department of Electronics and Communications Engineering, Faculty of Engineering, Cairo University,

Giza 12613, Egypt. Email: mismail@eece.cu.edu.eg.

April 4, 2014 DRAFT



2

Index Terms

Symbol error rate, α-µ fading, asymptotic analysis, Fox H-function, diversity systems.

I. INTRODUCTION

Performance evaluation of digital modulation schemes over fading channels has been a long-studied

problem in the field of wireless communications. Lots of performance metrics have been traditionally

used to quantify the performance of such systems. This includes the symbol or bit error rate (SER/BER),

the outage probability (OP) or the amount of fading (AoF), among many others. The probability of

error, whether in the form of SER or BER, has probably been the most sought after metric among those

mentioned above [1]. However, it is probably one of the most challenging to obtain, especially in closed

form. This is particularly true for the rather complicated recently introduced generalized fading models

such as the α-µ [2], the κ-µ and the η-µ models [3]. The classical way of obtaining the probability of

error for a specific modulation scheme has always been through averaging the conditional probability

of error on a specific signal-to-noise ratio (SNR) over the distribution of the SNR. As simple as it

sounds, the process rarely results in tractable integrals that lead to closed-form expressions and thus its

usability from a practical point of view has been limited to simple fading models such as the Rayleigh

distribution. Therefore, alternative frameworks have been proposed for deriving closed-form expressions

of the SER. One of the most popular approaches is presented in the seminal works by Alouini et al

in [4] and [5], who have laid the foundation of what is commonly known as the moment-generating

function (MGF) approach. This approach has been successfully applied to the Rayleigh, the Nakagami-

m, the Rice, and the Nakagami-q fading models (see [1, Ch. 8] and references therein). However, it

requires performing some tricky integrations for moderately complicated fading distributions such as

the case of Nakagami-m. Moreover, when applied to rather complicated generalized fading models

such as the α-µ one, this approach usually fails in providing closed-form expressions. Additionally, it

can not be straightforwardly used to estimate the asymptotic behavior of the SER for large values of

the average SNR, which is a useful metric for performance evaluation.

On another related front, diversity receivers have long been used as an effective way to mitigate the

detrimental effect of fading. Within the last couple of years, lots of works in the literature discussed

the performance of diversity receivers within the context of α-µ fading. In particular, the problem of

performance analysis of selection combining (SC) diversity over α-µ fading in the presence of co-
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channel interference has been discussed in [6]. In [7], we derived expressions for the OP of dual branch

SC and switch-and-stay combining (SSC) diversity in the presence of a single dominant independent co-

channel interferer with a minimum desired signal power constraint considering this fading model. Also,

the authors in [8] studied the signal-to-interference ratio (SIR-) based SC diversity system assuming

correlated branches. Among the most famous diversity techniques that have been widely studied are

the maximal-ratio combining (MRC) and equal-gain combining (EGC) [1]. The OP when using EGC

and MRC diversity assuming α-µ fading has been studied in [9] and [10] using the moment-matching

method where approximate expressions were obtained. In [11], Aalo et al derived expressions for

the SER of EGC, MRC as well as SC diversity receivers over the generalized-Gamma (GG) fading

channel, which is an alternative representation of the α-µ fading at hand. The expressions obtained

in this work, in spite of being exact, are not given in closed form. Instead, they are in the form

of numerical integrations where the integrand consists of the product or the sum of multiple Fox

H-functions [12] or Meijer G-function [13, Sec. 9.3], depending on the type of diversity used. The

expressions are therefore not very convenient to deal with. The work in [14] presents closed-form

expressions for the moments of the output SNR of the generalized selection combining GSC(2, L)

receiver when operating over the GG fading channel as well as infinite-series representations for the

MGF and the cumulative distribution function (CDF) of the output SNR. The BER and OP have also

been evaluated numerically and no closed-form expressions were reported. Also, in [15], closed-form

upper bounds for the outage probability as well as the BER of the EGC receiver over the GG fading

channel have been derived. Although the results are quite neat, the validity of the bounds is restricted

to rational values of α and are, in fact, quite loose at high SNRs especially for small values of the

parameter µ. Another interesting work by Samimi and Azmi [16] uses a well-known infinite series

representation for the SER of the EGC receiver where the series terms are shown to be complicated

functions of Meijer’s G-functions. The authors then propose a method for approximating the series

terms in order to make evaluating the ASER more numerically tractable. Finally, in [17], the authors

evaluate the SER of the EGC and MRC receivers over the GG fading channel using the MGF-based

approach, where again the expressions are given in terms of complicated numerical integrations and

no closed-form expressions are given.

Thus motivated, in this paper, we provide the following contributions to the SER analysis of single

and multiple-branch receivers operating over fading channels in general and the α-µ fading in particular.

First, we propose an alternative simple and straightforward framework for evaluating the SER. The
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framework could be used for any fading model but, in this paper, it will be specifically tailored to the

α-µ case as a commonly used generalized fading model. The basic idea of the proposed framework is to

use the Mellin transform to express the SER in the form of a Mellin-Barnes integral [18]. Fortunately,

special functions represented by Mellin-Barnes integrals, such as the generalized Hypergeometric

function, the Meijer G-function, and the Fox H-function, have been extensively studied since the

beginning of the twentieth century (for a survey on those functions and their properties, the reader is

referred to [12], [19], [20]). Therefore, we shall be able to obtain Exact closed-from expressions for the

SER of different modulation techniques such as coherent binary frequency shift keying (CBFSK), M -

ary amplitude shift keying (M -ary ASK), M -ary phase shift keying (M -ary PSK), M -ary quadrature

amplitude modulation (M -QAM), differential binary phase shift keying (DBPSK), and non-coherent

M -ary frequency shift keying (NC M -ary FSK). This virtually represents all the modulation schemes

that are in use in practice. The obtained closed-form expressions are novel1 and are given in terms

of the univariate and multivariate Fox H-functions2. Furthermore, they are valid for any values of α

and µ. This is unlike the few expressions available in the literature for some scattered cases, which

usually assume some constraints on the values of α and/or µ (e.g., [26]). We confirm the validity of

the obtained expressions by studying the Nakagami-m fading model as a special case of the α-µ one

and showing that the obtained expressions indeed reduce to those previously reported in the literature.

Moreover, Monte Carlo simulation results are presented and are shown to perfectly match the analytic

expressions.

The second contribution of this paper is the study of the asymptotic behavior of the SER at

high average SNRs for all the previously mentioned modulation schemes. With the exception of the

contribution in [27], where the authors provided asymptotic SER expressions only for M -ary PSK over

α-µ fading, the literature is really lacking of such investigations over this channel model. We believe

that asymptotic expansions have a very important practical value as they provide an indication of the

rate of the change of the SER with respect to the average SNR. Thanks to our proposed Mellin-based

framework for deriving the SER, the derivation of the asymptotic expressions is very straightforward.

The obtained asymptotic expressions are much simpler than the closed-form ones and can be easily

1Results similar to those in this work for some binary modulation schemes have been reported in [21], however, the authors assumed
rational values for α in order to represent the results in terms of the Meijer G-function rather than the Fox H-function and be able to
evaluate the expressions numerically.

2The Fox H-function has been extensively used in the literature and a MATHEMATICAr implementation of the univariate version
has been reported in [22] and [23] while a MATLABr implementation for the bivariate version has been given in [24] and [25].
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evaluated to quantify the system performance in the high-SNR regime. Moreover, and unlike numerical

integration techniques, they are not subject to numerical underflow even when the exact SER is very

small. The third contribution of this work is generalizing the above results to the case of multiple-

branch EGC and MRC diversity receivers operating over α-µ fading. This includes both the exact as

well as the asymptotic analysis.

The rest of the paper is organized as follows: the following section discusses the methodology

used to obtain the closed-form expressions for the probability of error. In Section III, we study the

Nakagami-m fading model as a special case and use its results to confirm the validity of the obtained

expressions. In Section IV, we present expressions for the asymptotic behavior of the probability of

error in the high-SNR regime. Extension of the work to the EGC and MRC receivers case is carried

out in Section V. Numerical results and discussions are then presented in Section VI before the paper

is finally concluded in Section VII. Some relevant appendices then follow.

II. SYMBOL ERROR RATE FOR THE SINGLE-BRANCH RECEIVER OVER α-µ FADING WITH LINEAR

MODULATIONS

We first define the unconditional SER as the expectation of the conditional SER with respect to the

SNR, i.e.,

Pe =

∫ ∞
ζ=0

P (error|ζ)fζ(ζ)dζ, (1)

where ζ is the instantaneous SNR, Pe is the unconditional SER, P (error|ζ) represents the conditional

SER and fζ(ζ) is the probability density function (PDF) of the SNR. It is interesting to note here that

for some widely-used modulation schemes such as the M -ary PSK, a closed-form expression for the

conditional SER is actually not available. This is unlike its derivative with respect to ζ . Therefore, we

propose the following alternative form of the SER:

Pe = −
∫ ∞
ζ=0

dP (error|ζ)

dζ
Fζ(ζ)dζ, (2)

where Fζ(ζ) is the cumulative distribution function (CDF) of the SNR. This form is directly derived

by applying integration by parts to (1) and noting that Fζ(0) = 0 and limζ→∞ P (error|ζ) = 0. Thus,

we may use either (1) or (2) to derive the SER depending on the modulation scheme.

Our proposed framework for deriving the SER is based on expressing the SER as a Mellin-Barnes
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integral. The resultant expression is easily represented in terms of a generic special function such as

the Fox-H function or the Meijer-G function. Depending on the specific values of the parameters, the

obtained expression may even reduce to simpler functions as in the case of Nakagami-m fading. In

our analysis, we will make a frequent use of the following definition of the Mellin-transform [28]:

Definition 1. Given a continuous function f(ζ) defined on the domain ζ ∈ [0,∞[, then its Mellin

transform is defined as

f ∗(s) ≡M{f(ζ)} =

∫ ∞
0

f(ζ)ζs−1dζ. (3)

The Mellin transform exists as long as the integral
∫∞
ζ=0
|f(ζ)|ζk−1dζ is bounded for some k > 0.

Moreover, the inversion of the Mellin transform is accomplished by means of the inversion integral

f(ζ) ≡M−1{f ∗(s)} =
1

2πi

∫ c+i∞

c−i∞
f ∗(s)ζ−sds (4)

for some c > k.

Usually the Mellin-transform of a function is valid only for complex values satisfying inequalities

of the form a1 < <{s} < a2 where the constants a1 and a2 depend on the function f(ζ) itself. This

domain of analyticity is called the strip of definition of the Mellin-transform [28]. Now, the SER is

expressed in the form of a Mellin-Barnes integral thanks to the following theorem:

Theorem 1. Consider a general fading channel where the received SNR PDF is fζ(ζ) and its CDF

is Fζ(ζ). Suppose their Mellin transforms are f ∗(z) and F ∗(z), respectively. If the Mellin transform

of P (error|ζ) exists, then the unconditional SER for a single-branch receiver is given by any of the

following equivalent forms:

Pe =
1

2πi

∫ c+1+i∞

c+1−i∞
f ∗(1− z)h∗(z)dz (5a)

=
1

2πi

∫ c+1+i∞

c+1−i∞
F ∗(−z)g∗(z)dz (5b)

where h∗(z) is the Mellin transform of h(ζ) ≡ P (error|ζ), g∗(z) is the Mellin transform of g(ζ) ≡
−ζ d

dζ
P (error|ζ), and the constant c is such that −c lies in the strip of definition of f ∗(z) and 1 + c

lies in the strip of definition of h∗(z).

Proof. Since fζ(ζ) is a PDF, it is absolutely integrable and it is guaranteed to have a Mellin-transform,
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f ∗(z). Hence, we may apply the Parseval relation of the Mellin transform [28, Eq. (2.31)] to (1) yielding

Pe =
1

2πi

∫ c′+i∞

s=c′−i∞
f ∗(s)h∗(1− s)ds (6)

where the constant c′ lies in the strip of definition of f ∗(s) and 1− c′ lies in the strip of definition of

h(1− s). Applying the change of variables z′ = −s, we obtain

Pe =
1

2πi

∫ c+i∞

c−i∞
f ∗(−z′)h∗(z′ + 1)dz′, (7)

where c = −c′. Equation (5a) is derived straightforwardly by applying the change of variables z = z′+1

to (7). Finally, (5b) is obtained by noting that F (ζ) =
∫ ζ
0
fζ(u)du and using [13, Eqs. (17.42.2.ii) and

(17.42.3.i)] to get g∗(z) = zh∗(z) and F ∗(z) = −f ∗(z + 1)/z. Hence, f ∗(1 − z) = zF ∗(z) and

(5b) directly follows from (5a). It can also be derived by applying the Parseval relation of the Mellin

transform to (2).

In this paper, we customize Theorem 1 to the case of α-µ fading. Since it is easier to work with

the derivative of the conditional SER, d
dζ
P (error|ζ), for most of the considered modulation schemes,

we prefer to use (5b) over (5a) in deriving closed-form expression of the unconditional SER, Pe3. The

CDF of the SNR of α-µ fading channels is given by4

Fζ(ζ) =
γ
(
µ, µ

(
ζ

ζ̂

)α)
Γ(µ)

(8)

where α > 0 is an arbitrary parameter, ζ̂ = (E {ζα})1/α, µ > 0 is the inverse of the normalized

variance of ζα given by µ = E2(ζα)
E(ζ2α)−E2(ζα)

, and E(.) denotes the expectation operator. Also, Γ(.) is the

complete Gamma function, and γ(.) is the lower incomplete gamma function [13, Sec. 8.310]. It is

straightforward to show that the Mellin transform of Fζ(ζ) is given by

F ∗(z) = − 1

zΓ(µ)

(
µ1/α

ζ̂

)−z
Γ
(
µ+

z

α

)
, − αµ < <{z} < 0. (9)

Hence, substituting (9) into (5b), we obtain the following expression for the SER of α-µ fading

3In fact, both (5a) and (5b) are equally difficult for deriving the SER of the DBPSK and NC M -ary FSK modulation schemes but
we prefer to use (5b) in order to maintain a consistent analysis over all modulation schemes.

4It is worth mentioning here that when the channel suffers from α-µ fading with parameters (α, µ), the SNR, which is proportional
to the square of the fading envelope, will also be α-µ distributed but with parameters (α

2
, µ). In this paper, we assume that the SNR

directly follows an α-µ distribution with parameters (α, µ).
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TABLE I
SUMMARY OF THE DERIVATIVE − d

dζ
P (ERROR|ζ) FOR THE DIFFERENT MODULATION SCHEMES CONSIDERED.

Modulation Scheme − d

dζ
P (error|ζ)

CBFSK
1

2
√

2πζ
e−ζ/2

M -ary ASK
√

3(M − 1)

M
√
π(M2 − 1)ζ

e−3ζ/(M
2−1)

M -ary PSK
1√
πζ

sin(π/M)

[
1

2
+Q′

(√
2ζ cos(π/M)

)]
e− sin2(π/M)ζ

M -QAM

√
M − 1√
Mζ

√
6

(M − 1)π

[
1√
M

+ 2

√
M − 1√
M

Q′

(√
3ζ

M − 1

)]
e−3ζ/2(M−1)

DBPSK
1

2
e−ζ

NC M -ary FSK
M−1∑
n=1

(−1)n+1

(
M − 1

n

)
n

(n+ 1)2
e−nζ/(n+1)

channels:

Pe =
1

Γ(µ)

1

2πi

∫ c1+i∞

z=c1−i∞

1

z

(
µ1/α

ζ̂

)z
Γ
(
µ− z

α

)
g∗(z)dz (10)

where c1 is a real constant such that 0 < c1 < αµ. Based on the result above, closed-form expressions

for the unconditional SER can be directly obtained as a Mellin-Barnes type integral if one can derive a

closed-form expression for g∗(z) (or h∗(z)) in Theorem 1. Depending on the value of the parameters,

the obtained expression can be either directly represented in terms of the Fox-H function or reduced

to simpler ones such as the Meijer-G function and the hypergeometric function as will be shown later

in the sequel. Another important advantage of the expression in Theorem 1 is that it enables a direct

derivation of the asymptotic expressions for Pe when ζ̂ is large as will be detailed in Section IV.

Hence, our main problem now reduces to finding closed-from expressions for g∗(z) in Theorem 1,

which is the Mellin transform of −ζ d
dζ
P (error|ζ). Fortunately, this is possible for the above-mentioned

modulation schemes where the derivatives of the conditional SER are summarized in Table I. In this
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table, Q′(.) is the complement of the Gaussian-Q function5 defined by

Q′(z) ≡
∫ z

0

1√
2π
e−t

2/2dt, (11)

and the derivatives provided are directly obtained from the corresponding closed-form expressions

for the conditional probability of error provided in [1, Ch. 8] with the exception of the M -ary PSK

case, which we have proved previously in [29, Appendix 1]. Generally, as seen from Table I, it is

noted that dP (error|ζ)/dζ contains one or more of the factors e−bζ , e−bζ/
√
ζ , and e−bζQ′(

√
aζ)/
√
ζ

where a and b are positive constants. Thus, g∗(z) is a linear combination of the following terms:

M{ζ exp(−bζ)}, M{√ζ exp(−bζ)} and M{√ζ exp(−bζ)}Q′(√aζ). Accordingly, using Theorem 1,

we derive the expressions summarized in Table II for the unconditional SER. In this table, we have

I0(b) =
1

2πiΓ(µ)

∫ c1+i∞

z=c1−i∞

(
µ1/α

ζ̂

)z
Γ
(
µ− z

α

) 1

z
M
{
ζe−bζ

}
dz, (12a)

I1(b) =
1

2πiΓ(µ)

∫ c1+i∞

z=c1−i∞

(
µ1/α

ζ̂

)z
Γ
(
µ− z

α

) 1

z
M
{√

ζe−bζ
}
dz, (12b)

I2(a, b) =
1

2πiΓ(µ)

∫ c1+i∞

z=c1−i∞

(
µ1/α

ζ̂

)z
Γ
(
µ− z

α

) 1

z
M
{√

ζQ′(
√
aζ)e−bζ

}
dz. (12c)

And the required Mellin-transforms can be derived straightforwardly by substituting the corresponding

function in (3) and making use of the definition of the gamma function yielding

M
{
ζe−bζ

}
= b−(z+1)Γ(z + 1), (13a)

M
{√

ζe−bζ
}

= b−(z+1/2)Γ

(
z +

1

2

)
, (13b)

M
{√

ζe−bζQ′(
√
aζ)
}

=
1

2
√
π

1

2πi

∫ c2+i∞

s=c2−i∞

(a/2)sb−(z+s+1/2)

s
Γ

(
1

2
− s
)

Γ

(
z + s+

1

2

)
ds (13c)

where c2 is a real constant such that 0 < c2 < 1/2. For deriving (13c), we made use of the relation

between the Gaussian-Q function and the incomplete Gamma function in [13, Eq. (8.359.4)]. Thus,

and after some manipulations, we obtain the following final expressions for I0(b), I1(b), and I2(a, b):

5In fact, it is also possible to use the ordinary Gaussian-Q function in our analysis. However, the complementary function is more
convenient because its Mellin transform is a bit simpler.
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TABLE II
SUMMARY OF THE Pe FOR THE DIFFERENT MODULATION SCHEMES CONSIDERED IN THIS PAPER.

Modulation Scheme Pe

CBFSK
1

2
√

2π
I1
(

1

2

)
M -ary ASK

√
3(M − 1)

M
√
π(M2 − 1)

I1
(

3

M2 − 1

)
M -ary PSK

sin(π/M)√
π

[
1

2
I1
(
sin2(π/M)

)
+ I2

(
2 cos2(π/M), sin2(π/M)

)]
M -QAM

√
M − 1√
M

√
6

π(M − 1)

[
1√
M
I1
(

3

2(M − 1)

)
+ 2

√
M − 1√
M

I2
(

3

M − 1
,

3

2(M − 1)

)]
DBPSK

1

2
I0(1)

NC M -ary FSK
M−1∑
n=1

(−1)n+1

(
M − 1

n

)
n

(n+ 1)2
I0
(

n

n+ 1

)

I0(b) =
1

bΓ(µ)
H1,1

1,1

µ1/α

bζ̂

∣∣∣∣∣∣ (1, 1)

(µ, 1/α)

 , (14a)

I1(b) =
1√
bΓ(µ)

H1,2
2,2

µ1/α

bζ̂

∣∣∣∣∣∣ (1/2, 1), (1, 1)

(µ, 1/α), (0, 1)

 , (14b)

I2(a, b) =
1

2
√
πbΓ(µ)

H0,1;1,1;1,1
1,0;1,2;1,2

 a

2b
,
µ1/α

bζ̂

∣∣∣∣∣∣(1/2; 1, 1) (1, 1) (1, 1)

− (1/2, 1), (0, 1) (µ, 1/α), (0, 1)

 (14c)

where Hm,b
p,q (ξ) is the univariate Fox-H function defined by [12, Eq. (1.2)] and H0,n;m1,n1;...;mL,nL

p,q;p1,q1;...;pL,qL
(ξ1, . . . , ξL)

is the multivariate H-function defined by [12, Eq. (A.1)]. Finally, substituting Eqs. (14) into the

expressions in Table II, we obtain the final closed-form expressions for the SER for the single-branch

receiver over α-µ fading as summarized in Table III. It is worth mentioning here that the obtained

expressions for M -ary ASK, M -ary PSK, M -QAM and NC M -ary FSK, are all novel and have never

been reported before in the literature. Also, the result for CBFSK is identical to [21, Eq. (10)]. The

expressions are valid for any combination of α and µ without any restrictions and they accommodate

other fading models as the Weibull and Nakagami-m ones as special cases. We will discuss the special

case of Nakagami-m in details in the following section.

One important note is due here; we highly believe that the proposed methodology will be applicable
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TABLE III
FINAL FORM OF THE Pe FOR THE DIFFERENT MODULATION SCHEMES CONSIDERED IN THIS PAPER.

Modulation Scheme Pe

CBFSK
1

2
√
πΓ(µ)

H1,2
2,2

(
2µ1/α

ζ̂

∣∣∣∣ (1/2, 1), (1, 1)
(µ, 1/α), (0, 1)

)
M -ary ASK

M − 1

M
√
πΓ(µ)

H1,2
2,2

(
(M2 − 1)µ1/α

3ζ̂

∣∣∣∣ (1/2, 1), (1, 1)
(µ, 1/α), (0, 1)

)

M -ary PSK

1

2Γ(µ)
√
π

[
H1,2

2,2

(
µ1/α

sin2(π/M)ζ̂

∣∣∣∣∣(1/2, 1), (1, 1)
(µ, 1α), (0, 1)

)

+
1√
π
H1,0;1,1;1,1

0,1;1,2;1,2

(
cot2(π/M),

µ1/α

sin2(π/M)ζ̂

∣∣∣∣∣(1/2; 1, 1); (1, 1); (1, 1)
−; (1/2, 1), (0, 1); (µ, 1/α), (0, 1)

)]

M -QAM

2(
√
M − 1)

M
√
πΓ(µ)

[
H1,2

2,2

(
2(M − 1)µ1/α

3ζ̂

∣∣∣∣(1/2, 1), (1, 1)
(µ, 1α), (0, 1)

)
+

√
M − 1√
π

H1,0;1,1;1,1
0,1;1,2;1,2

(
1,

2(M − 1)µ1/α

3ζ̂

∣∣∣∣(1/2; 1, 1); (1, 1); (1, 1)
−; (1/2, 1), (0, 1); (µ, 1/α), (0, 1)

)]
DBPSK

1

2Γ(µ)
H1,1

1,1

(
µ1/α

ζ̂

∣∣∣∣ (1, 1)
(µ, 1/α)

)
NC M -ary FSK

1

Γ(µ)

M−1∑
n=1

(−1)n+1

(
M − 1

n

)
1

n+ 1
H1,1

1,1

(
(n+ 1)µ1/α

nζ̂

∣∣∣∣ (1, 1)
(µ, 1/α)

)

to more general fading distributions such as the extended generalized-K (EGK) fading distribution [30]

or even the more general family of the H-function distribution [31], [32]6. The reason for such a belief

is that the Mellin transforms of those distributions, f ∗(z) and F ∗(z), exist and are in the form of a ratio

between products of complex gamma functions; see [12, Chapter 2, Eq. (2.8)] and note that the EGK

fading distribution is a special case of the H-function distribution (upon using [33, Theorem 6.1] with

some arrangement). Hence, according to Theorem 1 and noting that h∗(z) and g∗(z) are independent

of the fading distribution, we can easily deduce that the SER will still be a linear combination of

some functions I0(b), I1(b), and I2(a, b), which are a bit different from those defined in (14). The

main difference, however, is that the term Γ(µ− z/α) in (14) will be replaced by a ratio of products

of complex Gamma functions. Hence, the functions I0(b), I1(b), and I2(a, b) are the inverse Mellin

transform of a ratio of products of complex Gamma functions and thus they can be represented in

terms of higher order Fox-H functions.

6It is worth mentioning here that results pertaining to the performance of some binary modulation schemes over the H-function
distribution of families have been already presented in [32].
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III. A SPECIAL CASE: NAKAGAMI-m FADING

It is of interest to see if the SER expressions of the single-branch receiver over α-µ fading reduce

to those of Nakagami-m fading by setting α = 1 and µ = m7. In Appendix A, we shall prove that,

for the Nakagami-m fading, the expressions for I0(b), I1(b), and I2(a, b) reduce to

I0(b) =
1

b
φ(b), (15a)

I1(b) =
Γ(m+ 1/2)√
bΓ(m+ 1)

φ(b)2F1

(
m,

1

2
;m+ 1; (φ(b))1/m

)
, (15b)

I2(a, b) =
1√
πb

φ(b)√
1 + 2b/a

F1

(
1

2
;m,

1

2
−m;

3

2
;
(φ(b))1/m

1 + 2b/a
,

1

1 + 2b/a

)
(15c)

where φ(s) = (1 + sζ̂/m)−m is the MGF of the Nakagami-m distribution, 2F1(a, b; c; z) is the Gauss

hypergeometric function [13, Eq. (9.100)] and F1(a; b, b′; c, c′, x, y) is the Appell series [34, Eq. (5.7.6)].

Substituting (15) into the results in Table II, we obtain the final expressions for the unconditional SER

for Nakagami-m fading channels as summarized in Table IV.

First of all, we see that the probability of error expressions for CBFSK and M -ary PSK reported in

the table are identical to Eqs. (5) and (10) in [35], respectively. In addition, the expression for DBPSK

is identical to [13, Eq. (8.183)] and that for NC M -ary FSK reduces to [13, Eq. (8.161)] after some

simple manipulations. Also, the expression for M -ary ASK is reducible to the one in [1, Eq. (8.105b)]

after using [13, Eq. (9.131)]. Finally, for the M -QAM case, the following expression is provided in

[35, Eq. (12)] for Nakagami-m fading:

Pe =
2√
π

√
M − 1√
M

φ

(
3

2(M − 1)

)
Γ(m+ 1/2)

Γ(m+ 1)
2F1

m, 1

2
;m+ 1;

(
1 +

3ζ̂

2m(M − 1)

)−1
− 2

π(2m+ 1)

(√
M − 1√
M

)2

φ

(
3

(M − 1)

)
F1

(
1;m, 1;m+

3

2
;
1 + 3ζ̂/2(M − 1)m

1 + 3ζ̂/(M − 1)m
;
1

2

)
. (16)

In Appendix B, we show that this expression is indeed equivalent to that provided in Table IV. We

now switch our attention to the asymptotic analysis for the probability of error.

7Note that the Nakagami-m fading scenario is obtained by setting α = 1 and not α = 2 because we started our analysis with the
SNR being α-µ distributed with parameters (α, µ) and not with parameters (α

2
, µ).
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TABLE IV
THE Pe EXPRESSIONS FOR THE DIFFERENT MODULATION SCHEMES CONSIDERED IN THIS PAPER ASSUMING THE NAKAGAMI-m

FADING MODEL AS A SPECIAL CASE.

Modulation Scheme Pe

CBFSK
1

2
√
π

Γ(m+ 1/2)

Γ(m+ 1)
φ

(
1

2

)
2F1

m, 1

2
;m+ 1;

(
1 +

ζ̂

2m

)−1
M -ary ASK

M − 1

M
√
π

Γ(m+ 1/2)

Γ(m+ 1)
φ

(
3

M2 − 1

)
2F1

m, 1

2
;m+ 1;

(
1 +

3ζ̂

m(M2 − 1)

)−1

M -ary PSK

φ
(
sin2(π/M)

)
√
π

Γ(m+ 1/2)

2Γ(m+ 1)
2F1

m, 1

2
;m+ 1;

(
1 +

ζ̂ sin2(π/M)

m

)−1
+

cos(π/M)√
π

F1

(
1

2
;m,

1

2
−m;

3

2
;

cos2(π/M)

1 + 2 ˆζ sin2(π/M)
, cos2(π/M)

)]

M -QAM

√
2

π

√
M − 1√
M

φ

(
3

2(M − 1)

)
×

√ 2

M

Γ(m+ 1/2)

Γ(m+ 1)
2F1

m, 1

2
;m+ 1;

(
1 +

3ζ̂

2m(M − 1)

)−1
+

2√
π

√
M − 1√
M

F1

1

2
;m,

1

2
−m;

3

2
;

(
2 +

3ζ̂

m(M − 1)

)−1
;
1

2


DBPSK

1

2
φ(1)

NC M -ary FSK
M−1∑
n=1

(−1)n+1

(
M − 1

n

)
1

n+ 1
φ

(
n

n+ 1

)

IV. ASYMPTOTIC ANALYSIS OF THE PROBABILITY OF ERROR

It is of practical interest to derive asymptotic expansions of the SER for very large values of the

average SNR, ζ̂8. This is achieved by investigating the asymptotic behavior of the integrals I0(b),

I1(b), and I2(a, b) when the average SNR, ζ̂ is large. Towards that end, asymptotic expressions can be

easily derived using the complex residue theorem. Generally, all the poles of the complex integrands

in (14) are simple. Moreover, the poles may be divided into two sets: those lying to the left of the

contour of integration and those lying to the right of it, the latter being given by z = α(µ+ k) where

8We refer to ζ̂ as the average SNR though it is not equal to the ordinary mean of the SNR E {ζ} for α 6= 1. However, it does serve
as an intuitive measure of the most likely value of the SNR even if α 6= 1.
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=(z)

<(z)
αµ

α(µ+1)

α(µ+2)0-1-2

L

............

c1−iR

c1+iR

Fig. 1. Path of the complex contour integration used to evaluate I0(b). When ζ̂ is sufficiently large and as R tends to∞, the integration
over the half circle in the path L will be negligible. Hence, the integration over L will be equivalent to the integration from c1 − i∞
to c2 + i∞. The asymptotic expansion is obtained by considering only the pole at z = αµ encircled by a thick line.

k is an integer. An illustration for the case of I0(b) is shown in Fig. 1. According to [36, Theorem

1.7 and Theorem 1.11], asymptotic expansions of the Fox-H function can be obtained by evaluating

the residue of the complex integration at the poles closest to the contour of integration. Moreover, for

large values of ζ̂ , we should consider the poles lying to the right of the contour. Thus, we determine

the asymptotic expansion by evaluating the residue at z = αµ. Taking into consideration that the value

of the residue of Γ(µ − z/α) at z = αµ is −α, we derive the following asymptotic expansions for

I0(b) and I1(b) when ζ̂ is considerably large:

I0(b) ∼
µµΓ(1 + αµ)

bΓ(µ+ 1)
(bζ̂)−αµ, I1(b) ∼

µµΓ(1
2

+ αµ)√
bΓ(µ+ 1)

(bζ̂)−αµ. (17)

For I2(a, b), we first use the fact that [13, Eq. (9.113)]

2F1(A,B;C; z) =
Γ(C)

Γ(A)Γ(B)

1

2πi

∫ c+i∞

z=c−i∞

Γ(s+ A)Γ(s+B)Γ(−s)
Γ(s+ C)

(−z)sds
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where the path of integration separates the poles of Γ(s+A) and Γ(s+B) from the poles of Γ(−s).

Hence, and after simple manipulations, we can write I2(a, b) as

I2(a, b) =

√
a

b
√

2πΓ(µ)(2πi)

∫ c1+i∞

z=c1−i∞

(
µ1/α

bζ̂

)z
Γ(µ− z/α)Γ(z)2F1

(
1

2
, z + 1;

3

2
;− a

2b

)
dz. (18)

Noting that the Gaussian hypergeometric function 2F1(a, b; c; z) is an entire function with respect to

b, the asymptotic expansion for large ζ̂ can be written as

I2(a, b) ∼
√
aµµΓ(αµ+ 1)

b
√

2πΓ(µ+ 1)
2F1

(
1

2
, 1 + αµ;

3

2
;− a

2b

)
(bζ̂)−αµ. (19)

Based on the above obtained asymptotic expansions for I0(b), I1(b) and I2(a, b), the asymptotic

expressions for the SER for high average SNR detailed in Table V directly follow. We notice from the

table that all the asymptotic expansions can be given in the form Pe ∝ ζ̂−αµ where the proportionality

constant depends on the modulation scheme. Thus, for high ζ̂ , it is straightforward to compare different

modulation schemes by simply comparing the proportionality constants of their asymptotic expansions.

V. EXTENSION TO MULTI-BRANCH MRC AND EGC DIVERSITY RECEIVERS

The above analysis can be directly extended to the case of MRC and EGC diversity receivers

operating over independent α-µ fading channels. Assume that the diversity receiver combines signals

coming from L branches and let the instantaneous SNR at the lth branch be ζl, which we assume to

follow the α-µ distribution with parameters αl and µl. In this context, we assume that the instantaneous

SNRs at the L-branches ζl, i = 1, . . . , L are independent and non-identically distributed (i.n.i.d.). The

unconditional SER can thus be represented by the following integral:

Pe =

∫ ∞
ζc=0

P (error|ζc)fζc(ζc)dζc (20)

where ζc is the SNR at the combiner output, which is a function of the SNRs ζl, l = 1, . . . , L and

fζc(ζc) is its PDF. Generally, it is very difficult to obtain a closed-form expression for the PDF (or the

CDF) of the output of either the EGC or MRC diversity receiver. Therefore, the above expression is

not much useful in deriving a closed-form expression for the unconditional SER. Alternatively, we can

express the conditional SER directly in terms of ζ1, . . . , ζL. Hence, the unconditional SER is simply
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TABLE V
ASYMPTOTIC EXPRESSIONS FOR Pe FOR THE DIFFERENT MODULATION SCHEMES OVER α-µ FADING.

Modulation Scheme Asymptotic Pe

CBFSK
µµΓ(1

2
+ αµ)

2
√
πΓ(1 + µ)

(
ζ̂

2

)−αµ
M -ary ASK

(M − 1)µµΓ(1
2

+ αµ)

M
√
πΓ(1 + µ)

(
3ζ̂

M2 − 1

)−αµ

M -ary PSK

µµ

Γ(1 + µ)
√
π

(
ζ̂ sin2(π/M)

)−αµ
×
[

1

2
Γ

(
1

2
+ αµ

)
+

cot(π/M)√
π

Γ(1 + αµ)2F1

(
1

2
, 1 + αµ;

3

2
;− cot2

( π
M

))]

M -QAM

2µµ

Γ(1 + µ)
√
π

√
M − 1√
M

(
3ζ̂

2(M − 1)

)−αµ
×
[√

1

M
Γ

(
1

2
+ αµ

)
+ 2

√
M − 1√
Mπ

Γ(1 + αµ)2F1

(
1

2
, 1 + αµ;

3

2
;−1

)]
DBPSK

µµΓ(1 + αµ)

2Γ(1 + µ)
ζ̂−αµ

NC M -ary FSK
M−1∑
n=1

(−1)n+1

(
M − 1

n

)
µµΓ(1 + αµ)

(n+ 1)Γ(1 + µ)

(
nζ̂

n+ 1

)−αµ

the expectation of the conditional SER with respect to the joint distribution of ζ1, . . . , ζL, i.e.,

Pe = E {P (error|ζ1, . . . , ζL)} =

∫ ∞
ζ1=0

. . .

∫ ∞
ζL=0

P (error|ζ1, . . . , ζL)fζ1,...,ζL(ζ1, . . . , ζL)dζ1 . . . dζL.

(21)

Since the SNRs ζ1, . . . , ζL are statistically independent, their joint PDF is simply the product of their

individual PDFs. Denoting ζ =
[
ζ1 . . . ζL

]T
, the unconditional SER is given by the following

L-dimensional integration:

Pe =

∫
ζ

P (error|ζ)

(
L∏
l=1

fζl(ζl)

)
dζ (22)

where fζl(ζl) is the PDF of ζl and
∫
ζ

is a shorthand for
∫∞
ζ1=0

. . .
∫∞
ζL=0

. Similar to the case of single

branch communication and some modulation schemes such as the PSK, we need to work with the

derivative of the SER since, unlike the SER itself, it has a closed-form expression. In this case, we

need to apply the by-parts integration rule to only one of the variables, say ζ1, as stated in the following
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lemma:

Lemma 1. The average SER of a digital modulation scheme operating over L i.n.i.d. faded branches

could be written as:

Pe = −
∫
ζ

∂

∂ζ1
P (error|ζ)Fζ1(ζ1)

(
L∏
l=2

fζl(ζl)

)
dζ. (23)

Proof. The SER can be represented by the following integral:

Pe =

∫ ∞
ζ2=0

. . .

∫ ∞
ζL=0

∫ ∞
ζ1=0

P (error|ζ)fζ1(ζ1)dζ1

(
L∏
l=2

fζl(ζl)

)
dζL . . . dζ2. (24)

Applying integration by parts to the innermost integration yields

Pe =

∫ ∞
ζ2=0

. . .

∫ ∞
ζL=0

[
P (error|ζ)Fζ1(ζ1)

∣∣∣∞
ζ1=0
−
∫ ∞
ζ1=0

∂

∂ζ1
P (error|ζ)Fζ1(ζ1)dζ1

]( L∏
l=2

fζl(ζl)

)
dζL . . . dζ2

= −
∫
ζ

∂

∂ζ1
P (error|ζ)Fζ1(ζ1)

(
L∏
l=2

fζl(ζl)

)
dζ (25)

where the last line follows from the fact that Fζ1(0) = 0 and limζ1→∞ P (error|ζ) = 0.

We may now use either (22) or (23) to derive the required SER. In order to express the SER in

terms of the multivariate H-function, we need to represent the SER as a Mellin-Barnes integral type

as shown before in the single-branch case. A generalization of Theorem 1 is thus provided in the

following theorem:

Theorem 2. The unconditional SER for a diversity receiver combining L statistically independent

signals can be represented by one of the following equivalent L-fold complex integrations.

Pe =
1

(2πi)L

∫
z

(
L∏
l=1

f ∗(1− zl)
)
h∗(z)dz (26a)

=
1

(2πi)L

∫
z

(
L∏
l=1

zlF
∗(−zl)

)
h∗(z)dz (26b)

where z =
[
z1 . . . zL

]
and the integral sign

∫
z

is a shorthand for
∫ c1+i∞
z1=c1−i∞ . . .

∫ cL+i∞
zL=cL−i∞

where the

constants {cl} are real and chosen properly. The function h∗(z) is the L-dimensional Mellin-transform
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of P (error|ζ) defined by

h∗(z) ≡ML {P (error|ζ)} =

∫
ζ

P (error|ζ)

(
L∏
l=1

ζzl−1l

)
dζ (27a)

=
1

z1
ML

{
−ζ1

∂

∂ζ1
P (error|ζ)

}
(27b)

Proof. The proof is direct generalization to that of Theorem 1 with the use of the Parseval’s relation

for the multidimensional Mellin transform [37, Chapter 3, Theorem 3.14]. Therefore, it is omitted.

Applying the special case of independent branches with α-µ fading, we have the following important

corollary.

Corollary 1. The unconditional SER for a diversity receiver combining L statistically independent

signals that are α-µ faded can be represented by the following L-fold complex integration:

Pe =
1

(2πi)L
∏L

l=1 Γ(µl)

∫
z

Λ(z)h∗(z)dz (28)

where z =
[
z1 . . . zL

]
and the integral sign

∫
z

is a shorthand for
∫ c1+i∞
z1=c1−i∞ . . .

∫ cL+i∞
zL=cL−i∞

where the

constants {cl} are real and satisfy 0 < cl < αlµl, l = 1, . . . , L. The function Λ(z) is given by

Λ(z) =
L∏
l=1

(
µ
1/αl
l

ζ̂l

)zl

Γ

(
µl −

zl
αl

)
. (29)

Proof. For α-µ fading channels, the Mellin transform of the CDFs Fζl(ζl), l = 1, . . . , L are given by

F ∗(zl) = − 1

zlΓ(µl)

(
µ1/α

ζ̂l

)−zl
Γ
(
µ+

zl
α

)
, − αµ < <{zl} < 0 (30)

Substituting (30) into (26b) and making some arrangements, the corollary is proved.

According to Theorem 2, the procedure for deriving closed-form expressions for the SER is a direct

extension to that followed in the single-branch case and it goes as follows: first, we write the conditional

SER (or its derivative) as a direct function of ζ1, . . . , ζL, second, we derive its L-dimensional Mellin

transform h∗(z) as defined in Theorem 2. Finally, we plug the obtained expression for h∗(z) in (28)

in order to express the SER as a Mellin-Barnes integral and consequently in terms of the multivariate

H-function. For CBFSK, M -ary ASK, M -ary PSK, and QAM modulation, it is easier to work with

the derivative of the conditional SER. Hence, we use (27b) for deriving h∗(z). For these modulation
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schemes, the derivative of the conditional SER is a linear combination of one or more of the functions

in the first column of Table X in Appendix C, to which we refer as the basic functions, g(ζ). In

this table, we also list the Mellin transform of those basic functions as well as the corresponding

I-functions defined by

I ≡ 1

(2πi)L
∏L

l=1 Γ(µl)

∫
z

Λ(z)
1

z1
ML{g(ζ)}dz. (31)

It is straightforward to prove that, for MRC diversity, the final expression for the SER will be that

provided in Table II with the functions I1(·) and I2(·) replaced by the functions I1,MRC(·) and

I2,MRC(·) in Table X. Similarly, for the EGC diversity, we use the functions I1,EGC(·) and I2,EGC(·)
given in Table X in place of I1(·) and I2(·) to obtain the final expressions for the SER.

On the other hand, we found that for DBPSK and NC M -ary FSK modulation, it is easier to derive

h∗(z) using the conditional SER itself, i.e., using (27a). For these modulation schemes, the basic

functions and their Mellin transforms are listed in Table XI in Appendix C where the I-functions are

given by

I ≡ 1

(2πi)L
∏L

l=1 Γ(µl)

∫
z

Λ(z)ML{g(ζ)}dz. (32)

The unconditional SER is thus given by

DBPSK: Pe =
1

2
I0,c(1), NC M -ary FSK: Pe =

M−1∑
n=1

(−1)n+1

(
M − 1

n

)
1

n+ 1
I0,c

(
n

n+ 1

)
(33)

where I0,c(·) depends on the type of the combining scheme used. The final expressions for the SER

for different modulation schemes and MRC diversity are summarized in Table VI and those for EGC

diversity are in Table VII.

Finally, in order to obtain the asymptotic expressions for the SER of the MRC diversity and EGC

diversity, we first derive the asymptotic expansions of I0,MRC(b), I1,MRC(b), I2,MRC(a, b), I0,EGC(b),

I1,EGC(b), and I2,EGMRC(a, b) using the complex residue theorem as done before in Section IV. Doing
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TABLE VI
FINAL FORM OF THE Pe FOR THE DIFFERENT MODULATION SCHEMES CONSIDERED IN THIS PAPER WHEN MRC DIVERSITY IS

APPLIED.

Modulation Pe

CBFSK
1

2
√
π
∏L

l=1 Γ(µl)
H0,1;1,1;...;1,1

1,1;1,1;...;1,1

2µ
1/α1

1 /ζ̂1
...

2µ
1/αL
L /ζ̂L

∣∣∣∣∣∣∣(1/2; 1, . . . ; 1) (1, 1) . . . (1, 1)
(0; 1, . . . , 1) (µ1, 1/α1) . . . (µL, 1/αL)


M -ary ASK

M − 1

M
√
π
∏L

l=1 Γ(µl)
H0,1;1,1;...;1,1

1,1;1,1;...;1,1

 (M2 − 1)µ
1/α1

1 /3ζ̂1
...

(M2 − 1)µ
1/αL
L /3ζ̂L

∣∣∣∣∣∣∣(1/2; 1, . . . ; 1) (1, 1) . . . (1, 1)
(0; 1, . . . , 1) (µ1, 1/α1) . . . (µL, 1/αL)



M -PSK

1

2
√
π
∏L

l=1 Γ(µl)

H0,1;1,1;...;1,1
1,1;1,1;...;1,1

µ
1/α1

1 / sin2(π/M)ζ̂1
...

µ
1/αL
L / sin2(π/M)ζ̂L

∣∣∣∣∣∣∣(1/2; 1, . . . ; 1) (1, 1) . . . (1, 1)
(0; 1, . . . , 1) (µ1, 1/α1) . . . (µL, 1/αL)



+
1√
π
H0,1;1,1;1,1;...;1,1

1,1;1,2;1,1;...;1,1


cot2(π/M)

µ
1/α1

1 / sin2(π/M)ζ̂1
...

µ
1/αL
L / sin2(π/M)ζ̂L

∣∣∣∣∣∣∣∣∣
(1/2; 1, 1, . . . , 1) (1, 1) (1, 1) . . . (1, 1)
(0; 0, 1, . . . , 1) (1/2, 1), (0, 1) (µ1, 1/α1) . . . (µL, 1/αL)




M -QAM

2(
√
M − 1)

M
√
π
∏L

l=1 Γ(µl)

H0,1;1,1;...;1,1
1,1;1,1;...;1,1

2(M − 1)µ
1/α1

1 /3ζ̂1
...

2(M − 1)µ
1/αL
L /3ζ̂L

∣∣∣∣∣∣∣(1/2; 1, . . . ; 1) (1, 1) . . . (1, 1)
(0; 1, . . . , 1) (µ1, 1/α1) . . . (µL, 1/αL)



+

√
M − 1√
π

H0,1;1,1;1,1;...;1,1
1,1;1,2;1,1;...;1,1


1

2(M − 1)µ
1/α1

1 /3ζ̂1
...

2(M − 1)µ
1/αL
1 /3ζ̂L

∣∣∣∣∣∣∣∣∣
(1/2; 1, 1, . . . , 1) (1, 1) (1, 1) . . . (1, 1)
(0; 0, 1, . . . , 1) (1/2, 1), (0, 1) (µ1, 1/α1) . . . (µL, 1/αL)




DBPSK
1

2

L∏
l=1

1

Γ(µl)
H1,1

1,1

(
µ
1/αl
l

ζ̂l

∣∣∣∣∣ (1, 1)
(µl, 1/αl)

)

NCFSK
M−1∑
n=1

(−1)n+1

n+ 1

(
M − 1

n

) L∏
l=1

1

Γ(µl)
H1,1

1,1

(
(n+ 1)µ

1/αl
l

nζ̂l

∣∣∣∣∣ (1, 1)
(µl, 1/αl)

)

so, we have the following asymptotic expressions for MRC diversity

I0,MRC(b) ∼
L∏
l=1

Γ(1 + αlµl)

Γ(1 + µl)
µµll (bζ̂l)

−αlµl , (34a)

I1,MRC(b) ∼ Γ(1
2

+
∑L

l=1 αlµl)√
bΓ(1 +

∑L
l=1 αlµl)

L∏
l=1

Γ(1 + αlµl)

Γ(1 + µl)
µµll (bζ̂l)

−αlµl , (34b)

I2,MRC(a, b) ∼
√
a

b
√

2π
2F1

(
1 +

L∑
l=1

αlµl;
1

2
;
3

2
;− a

2b

)
L∏
l=1

Γ(1 + αlµl)

Γ(1 + µl)
µµll (bζ̂l)

−αlµl , (34c)
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TABLE VII
FINAL FORM OF THE Pe FOR THE DIFFERENT MODULATION SCHEMES CONSIDERED IN THIS PAPER WHEN EGC DIVERSITY IS

APPLIED.

Modulation Pe

CBFSK
2L−1∏L
l=1 Γ(µl)

H0,0;1,1;...;1,1
0,1;1,1;...;1,1

Lµ
1/α1

1 /2ζ̂1
...

Lµ
1/αL
L /2ζ̂L

∣∣∣∣∣∣∣ − (1, 2) . . . (1, 2)
(0; 1, . . . , 1) (µ1, 1/α1) . . . (µL, 1/αL)


M -ary ASK

2L(M − 1)

M
∏L

l=1 Γ(µl)
H0,0;1,1;...;1,1

0,1;1,1;...;1,1

L(M2 − 1)µ
1/α1

1 /12ζ̂1
...

L(M2 − 1)µ
1/αL
L /12ζ̂L

∣∣∣∣∣∣∣ − (1, 2) . . . (1, 2)
(0; 1, . . . , 1) (µ1, 1/α1) . . . (µL, 1/αL)



M -ary PSK

2L−1∏L
l=1 Γ(µl)

H0,0;1,1;...;1,1
0,1;1,1;...;1,1

Lµ
1/α1

1 /4 sin2(π/M)ζ̂1
...

Lµ
1/αL
L /4 sin2(π/M)ζ̂L

∣∣∣∣∣∣∣ − (1, 2) . . . (1, 2)
(0; 1, . . . , 1) (µ1, 1/α1) . . . (µL, 1/αL)



+
1

π
H0,1;1,1;1,1;...;1,1

1,1;1,2;1,1;...;1,1


cot2(π/M)

Lµ
1/α1

1 / sin2(π/M)ζ̂1
...

Lµ
1/αL
L / sin2(π/M)ζ̂L

∣∣∣∣∣∣∣∣∣
(1/2; 1, 1, . . . , 1) (1, 1) (1, 2) . . . (1, 2)
(0; 0, 2, . . . , 2) (1/2, 1), (0, 1) (µ1, 1/α1) . . . (µL, 1/αL)




M -QAM

2L+1(
√
M − 1)

M
∏L

l=1 Γ(µl)

H0,0;1,1;...;1,1
0,1;1,1;...;1,1

L(M − 1)µ
1/α1

1 /6ζ̂1
...

L(M − 1)µ
1/αL
L /6ζ̂L

∣∣∣∣∣∣∣ − (1, 2) . . . (1, 2)
(0; 1, . . . , 1) (µ1, 1/α1) . . . (µL, 1/αL)



+

√
M − 1

π
H0,1;1,1;1,1;...;1,1

1,1;1,2;1,1;...;1,1


1

2L(M − 1)µ
1/α1

1 /3ζ̂1
...

2L(M − 1)µ
1/αL
L /3ζ̂L

∣∣∣∣∣∣∣∣∣
(1/2; 1, 1, . . . , 1) (1, 1) (1, 2) . . . (1, 2)
(0; 0, 2, . . . , 2) (1/2, 1), (0, 1) (µ1, 1/α1) . . . (µL, 1/αL)




DBPSK
2L−1
√
π∏L

l=1 Γ(µl)
H0,0;1,1;...;1,1

0,1;1,1;...;1,1

Lµ
1/α1

1 /4ζ̂1
...

Lµ
1/αL
L /4ζ̂L

∣∣∣∣∣∣∣ − (1, 2) . . . (1, 2)
(1/2; 1, . . . , 1) (µ1, 1/α1) . . . (µL, 1/αL)


NCFSK

2L
√
π∏L

l=1 Γ(µl)

M−1∑
n=1

(−1)n+1

n+ 1

(
M − 1

n

)
H0,0;1,1;...;1,1

0,1;1,1;...;1,1

L(n+ 1)µ
1/α1

1 /4nζ̂1
...

L(n+ 1)µ
1/αL
L /4nζ̂L

∣∣∣∣∣∣∣ − (1, 2) . . . (1, 2)
(1/2; 1, . . . , 1) (µ1, 1/α1) . . . (µL, 1/αL)



and the following expressions for the EGC diversity

I0,EGC(b) ∼
√
π

Γ(1
2

+
∑L

l=1 αlµl)

L∏
l=1

Γ(1 + 2αlµl)

Γ(1 + µl)
µµll

(
4bζ̂l
L

)−αlµl
, (35a)

I1,EGC(b) ∼
√
π√

bΓ(1 +
∑L

l=1 αlµl)

L∏
l=1

Γ(1 + 2αlµl)

Γ(1 + µl)
µµll

(
4bζ̂l
L

)−αlµl
, (35b)

I2,EGC(a, b) ∼
√
a

b
√

2

2F1

(
1 +

∑L
l=1 αlµl,

1
2
; 3
2
;− a

2b

)
Γ
(

1
2

+
∑L

l=1 αlµl

) L∏
l=1

Γ(1 + 2αlµl)

Γ(1 + µl)
µµll

(
4bζ̂l
L

)−αlµl
. (35c)

Substituting (34) into the expressions in Table II, we obtain the asymptotic expressions in Table VIII.

Similarly, the asymptotic expressions of the SER with EGC are obtained by substituting (35) into
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TABLE VIII
ASYMPTOTIC EXPRESSIONS FOR Pe FOR THE DIFFERENT MODULATION SCHEMES OVER α-µ FADING WITH MRC DIVERSITY.

Modulation Asymptotic Pe

CBFSK
Γ(1

2
+
∑L

l=1 αlµl)

2
√
πΓ(1 +

∑L
l=1 αlµl)

L∏
l=1

Γ(1 + αlµl)

Γ(1 + µl)
µµll

(
ζ̂l
2

)−αlµl
M -ary ASK

(M − 1)Γ(1
2

+
∑L

l=1 αlµl)

M
√
πΓ(1 +

∑L
l=1 αlµl)

L∏
l=1

Γ(1 + αlµl)

Γ(1 + µl)
µµll

(
3ζ̂l

M2 − 1

)−αlµl

M -ary PSK

1

2
√
π

L∏
l=1

Γ(1 + αlµl)

Γ(1 + µl)
µµll (sin2(π/M)ζ̂l)

−αlµl

×

Γ
(

1
2

+
∑L

l=1 αlµl

)
Γ
(

1 +
∑L

l=1 αlµl

) +
2 cot(π/M)√

π
2F1

(
1

2
, 1 +

L∑
l=1

αlµl;
3

2
;− cot2

( π
M

))

M -QAM

2(
√
M − 1)

M
√
π

L∏
l=1

Γ(1 + αlµl)

Γ(1 + µl)
µµll

(
3ζ̂l

2(M − 1)

)−αlµl

×

Γ
(

1
2

+
∑L

l=1 αlµl

)
Γ
(

1 +
∑L

l=1 αlµl

) + 2

√
M − 1√
π

2F1

(
1

2
, 1 +

L∑
l=1

αlµl;
3

2
;−1

)
DBPSK

1

2

L∏
l=1

Γ(1 + αlµl)

Γ(1 + µl)
µµll ζ̂

−αlµl
l

NCFSK
M−1∑
n=1

(−1)n+1

n+ 1

(
M − 1

n

) L∏
l=1

Γ(1 + αlµl)

Γ(1 + µl)
µµll

(
nζ̂l
n+ 1

)−αlµl

the expressions in Table II and are given in Table IX. Similar to single-branch communication, the

asymptotic SER is proportional to
∏L

l=1 ζ̂
−αlµl
l where the proportionality constant depends on both the

modulation scheme and the type of the diversity receiver.

VI. NUMERICAL RESULTS

In this section, we compare the exact expressions of the SER to their corresponding asymptotic

expansions for single-branch communication as well as MRC and EGC diversity receivers. First, we

investigate the single-branch case in Figs. 2, 3, and 4 where we plot the expressions for a group of

binary, 4-, 8- and 16-symbols based systems. In these results, we consider different combinations of α

and µ. The solid lines represent the exact expressions while the dashed ones represent the asymptotic

behavior of the SER in the high average SNR regime. Also, the markers denote results obtained via
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TABLE IX
ASYMPTOTIC EXPRESSIONS FOR Pe FOR THE DIFFERENT MODULATION SCHEMES OVER α-µ FADING WITH EGC DIVERSITY.

Modulation Asymptotic Pe

CBFSK
1

2Γ
(

1 +
∑L

l=1 αlµl

) L∏
l=1

Γ(1 + 2αlµl)

Γ(1 + µl)
αlµ

µl
l

(
2ζ̂l
L

)−αlµl

M -ary ASK
M − 1

MΓ
(

1 +
∑L

l=1 αlµl

) L∏
l=1

Γ(1 + 2αlµl)

Γ(1 + µl)
αlµ

µl
l

(
12ζ̂l

(M2 − 1)L

)−αlµl

M -ary PSK

1

2

L∏
l=1

Γ(1 + 2αlµl)

Γ(1 + µl)
µµll

(
4 sin2(π/M)ζ̂l

L

)−αlµl

×

 1

Γ
(

1 +
∑L

l=1 αlµl

) +
2 cot(π/M)

√
πΓ
(

1
2

+
∑L

l=1 αlµl

)2F1

(
1

2
, 1 +

L∑
l=1

αlµl;
3

2
;− cot2

( π
M

))

M -QAM

2(
√
M − 1)

M

L∏
l=1

Γ(1 + 2αlµl)

Γ(1 + µl)
µµll

(
6ζ̂l

(M − 1)L

)−αlµl

×

 1

Γ
(

1 +
∑L

l=1 αlµl

) +
2(
√
M − 1)

√
πΓ
(

1
2

+
∑L

l=1 αlµl

)2F1

(
1

2
, 1 +

L∑
l=1

αlµl;
3

2
;−1

)
DBPSK

√
π

2Γ
(

1
2

+
∑L

l=1 αlµl

) L∏
l=1

Γ(1 + 2αlµl)

Γ(1 + µl)
µµll

(
4ζ̂l
L

)−αlµl

NCFSK
√
π

Γ
(

1
2

+
∑L

l=1 αlµl

) M−1∑
n=1

(−1)n+1

n+ 1

(
M − 1

n

) L∏
l=1

Γ(1 + 2αlµl)

Γ(1 + µl)
µµll

(
4nζ̂l

L(n+ 1)

)−αlµl

Monte Carlo simulations, which were carried out via MATLAB c©, which was also used to implement

the Fox-H function. The number of transmitted symbols used in the simulations is the maximum of

104 and 10[log10(50/Pae)] where Pae is the computed asymptotic value of the SER and [.] denotes the

rounding operation. The α-µ variates were generated either via the classical inverse CDF method or

the method proposed in [38].

As seen from the figures, the simulation results perfectly match the results of the analytical ex-

pressions, which indeed proves the validity of the presented expressions in this paper. Moreover, the

proposed asymptotic expressions in Table V seem to perform well for high values of SNRs, roughly

when the exact value is less than 10−4. Moreover, for high average SNR, the logarithm of the exact SER

has almost a constant slope, which depends only on the values of α and µ and not on the modulation

scheme used. This is totally consistent with our derived asymptotic expressions.

April 4, 2014 DRAFT



24

5 10 15 20
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

ζ̂dB

S
E

R

QPSK

DBPSK

CBFSK

Fig. 2. Exact and asymptotic values of the SER of QPSK, CBFSK and DBPSK for α = 6.2 and µ = 0.9. The solid lines represent the
exact expressions while the dashed ones represent the asymptotic behavior. Markers represent the results of Monte Carlo simulations.

We now switch our attention to the multiple-branch receiver case where we plot the SER results

assuming identical branches with α = 2.5 and µ = 1 for EGC in Fig. 5 and for MRC in Fig. 6. In

Fig. 5, we consider 16-NCFSK and 16-ASK modulation schemes while in Fig. 6, we consider 16-

QAM and 16-PSK ones. In each figure, we consider both the dual-branch (L = 2) and the quad-branch

(L = 4) cases. Similar to the single-branch case, it is evident that the asymptotic expressions provide

an efficient tool to estimate the SER at high SNR values. Comparing to the case of single-branch

communication in Fig. 4, we easily notice the substantial reduction of the SER obtained by employing

diversity receivers. In all cases, the asymptotic expansion successfully tracks the decrease rate of the

logarithm of the SER.
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Fig. 3. Exact and asymptotic values of the SER of 8-ASK, 8-NCFSK and 8-PSK for α = 2, µ = 3 and α = 1, µ = 3. The solid lines
represent the exact expressions while the dashed ones represent the asymptotic behavior. Markers represent the results of Monte Carlo
simulations.

VII. CONCLUSIONS

In this paper, we have proposed a novel framework for deriving the SER of virtually all modulation

schemes when communicating over fading channels. The framework was then applied to the α-µ fading

case assuming both single-branch communication as well as EGC and MRC diversity receivers. The

proposed framework has enabled us to easily derive exact expressions for the SER for the CBFSK,

M -ary ASK, M -ary PSK, M -ary QAM, DBPSK, and NC M -ary FSK modulation schemes, which

are given in terms of the univariate and the multivariate Fox-H function. Furthermore, we have shown

that the obtained expressions reduce to the well-known results of Nakagami-m fading when we set

α = 1 and µ = m.

Thanks to our proposed framework, we have also been able to directly derive asymptotic expressions

for the SER for all the above-mentioned modulation schemes and diversity receivers. The obtained
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Fig. 4. Exact and asymptotic values of the SER of 16-ASK, 16-NCFSK, 16-PSK and 16-QAM α = 6, µ = 1.5 and α = 2.5, µ = 1.
The solid lines represent the exact expressions while the dashed ones represent the asymptotic behavior. Markers represent the results
of Monte Carlo simulations.

asymptotic expansions are not only very accurate for large values of the average SNR but also very

stable to compute because closed-form expressions for their logarithms is available. Moreover, they

are consistent with the fact that the rate of change of the logarithm of the SER primarily depends on

the particular values of α and µ and not the modulation scheme. This statement has been verified in

Section VI.
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Fig. 5. Exact and asymptotic values of the SER for a dual- and quad-branch EGC receiver employing 16-NCFSK and 16-ASK with
α = 2.5 and µ = 1.

APPENDIX A

EXPRESSIONS FOR I0(b), I1(b) AND I2(a, b) FOR NAKAGAMI-m FADING

For the Nakagami-m distribution, we set α = 1 and µ = m in (14). Applying the change of variables

z′ = −z for I0(b), we get

I0(b) =
1

bΓ(m)

1

2πi

∫ −c1+i∞
z′=−c1−i∞

Γ(m+ z′)Γ(−z′)
(
bζ̂

m

)z′

dz′ =
1

b

(
1 +

bζ̂

m

)−m
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Fig. 6. Exact and asymptotic values of the SER for a dual- and quad-branch MRC receiver employing 16-QAM and 16-PSK with
α = 2.5 and µ = 1.

where we used [13, Eq. (6.422.3)]. Similarly, we apply the change of variables z = z′ +m for I1(b)
yielding

I1(b) =
1√

bΓ(m)

(
m

bζ̂

)m
1

2πi

∫ c1−m+i∞

z′=c1−m−i∞

Γ(z′)Γ(z′ +m+ 1/2)Γ(z′ +m)

Γ(z′ +m+ 1)

(
m

bζ̂

)z′
dz′

=
Γ(m+ 1/2)√
bΓ(m+ 1)

(
1 +

bζ̂

m

)−m
2F1

(
m,

1

2
;m+ 1;

1

1 + bζ̂/m

)
(36)

where we used [13, Eq. (9.113)] followed by [13, Eq. (9.131.1)]. Finally, we make the change of

variables z = z′ +m and s = s′ + 1/2 for I2(a, b) and using [13, Eq. (9.185)] and [39, Eq. (39) and
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then (25)], we can prove that

I2(a, b) =
1

2
√
bπΓ(m)

(
m

bζ̂

)m ( a
2b

)1/2 Γ(1/2)Γ(m)

Γ(3/2)
F2

(
m+ 1;

1

2
,m;

3

2
,m+ 1;− a

2b
,−m

bζ̂

)

=
1√
bπ

(
m

bζ̂

)m ( a
2b

)1/2(
1 +

m

bζ̂

)−m
F1

(
1

2
; 1,m;

3

2
;− a

2b
,− a/2b

1 +m/bζ̂

)

=
1√
bπ

(
1 +

bζ̂

m

)−m(
1 +

2b

a

)−1/2
F1

1

2
;
1

2
−m,m;

3

2
;

(
1 +

2b

a

)−1
,

(
1 +

bζ̂

m

)−1(
1 +

2b

a

)−1 .

(37)

APPENDIX B

THE PROOF OF THE EQUIVALENCE OF THE M -QAM EXPRESSION IN TABLE IV AND (16)

First, write F1

(
1
2
;m, 1

2
−m; 3

2
;x, 1

2

)
in its Euler integral form [34, Eq. (5.8.5)], i.e.,

F1

(
1

2
;m,

1

2
−m;

3

2
;x,

1

2

)
=

1

2

∫ 2

u=0

u−1/2(1− ux)−m
(

1− u

2

)m−1/2
du

− 1

2

∫ 2

u=1

u−1/2(1− ux)−m
(

1− u

2

)m−1/2
du (38)

Substituting u = 2v in the first integral and u = 2/(2 − v) in the second, preforming some manipu-

lations, and making use of the Euler integral form of the hyper-geometric function [13, Eq. (9.111)]

and that of the Appell F1(·) function, we easily obtain the following relation

F1

(
1

2
;m,

1

2
−m;

3

2
;x,

1

2

)
=

√
π

2

Γ(m+ 1/2)

Γ(m+ 1)
2F1

(
1

2
,m;m+ 1; 2x

)
− 2−(m+1/2)(1− x)−m

2m+ 1
F1

(
1;m, 1;

3

2
;

1

2(1− x)
;
1

2

)
(39)

Substituting (39) into the M -QAM expression in Table IV with x = (2 + 3ζ̂/m(M − 1))−1 proves the

required equivalence.

APPENDIX C

BASIC FUNCTIONS FOR THE SER FOR THE DIFFERENT MODULATION SCHEMES
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TABLE X
BASIC FUNCTIONS USED FOR SER OF CBFSK, M -ARY ASK, M -ARY PSK, QAM MODULATION, THEIR MELLIN TRANSFORMS

AND THE CORRESPONDING I-FUNCTIONS. c2 IS A REAL CONSTANT SUCH THAT 0 < c2 < 1/2.

g(ζ) Mellin Transform and corresponding I-function

ζ1e
−bζMRC

√
ζMRC

ML {g(ζ)} = z1
Γ
(∑L

l=1 zl + 1
2

)
√
bΓ
(∑L

l=1 zl + 1
) L∏

l=1

b−zlΓ(zl),

I1,MRC(b) =
1√

b
∏L

l=1 Γ(µl)
H0,1;1,1;...;1,1

1,1;1,1;...;1,1

µ
1/α1

1 /bζ̂1
...

µ
1/αL
L /bζ̂L

∣∣∣∣∣∣∣(1/2; 1, . . . ; 1) (1, 1) . . . (1, 1)
(0; 1, . . . , 1) (µ1, 1/α1) . . . (µL, 1/αL)



ζ1e
−bζMRCQ′(

√
aζMRC)√

ζMRC

ML{g(ζ)} = z1

∏L
l=1 b

−zlΓ(zl)

2
√
bπΓ

(∑L
l=1 zl + 1

) 1

2πi

∫ c2+i∞

s=c2−i∞

Γ
(
1
2
− s
)

Γ
(
s+

∑L
l=1 zl + 1

2

)
s

( a
2b

)s
ds,

I2,MRC(a, b) =

1

2
√
bπ
∏L

l=1 Γ(µl)
H0,1;1,1;1,1;...;1,1

1,1;1,2;1,1;...;1,1


a/2b

µ
1/α1

1 /bζ̂1
...

µ
1/αL
L /bζ̂L

∣∣∣∣∣∣∣∣∣
(1/2; 1, 1, . . . , 1) (1, 1) (1, 1) . . . (1, 1)
(0; 0, 1, . . . , 1) (1/2, 1), (0, 1) (µ1, 1/α1) . . . (µL, 1/αL)


√
ζ1
L
e−bζEGC

ML{g(ζ)} = z1
2L
√
π

√
bΓ
(∑L

l=1 zl + 1
) L∏

l=1

(4b/L)−zlΓ(2zl),

I1,EGC(b) =
2L
√
π√

b
∏L

l=1 Γ(µl)
H0,0;1,1;...;1,1

0,1;1,1;...;1,1

Lµ
1/α1

1 /4bζ̂1
...

Lµ
1/αL
L /4bζ̂L

∣∣∣∣∣∣∣ − (1, 2) . . . (1, 2)
(0; 1, . . . , 1) (µ1, 1/α1) . . . (µL, 1/αL)



√
ζ1
L
e−bζEGCQ′(

√
aζEGC)

ML{g(ζ)} = z1
2L−1

∏L
l=1 Γ(2zl)(b/L)−zl

√
bπΓ

(
2
∑L

l=1 zl + 1
) 1

2πi

∫ c2+i∞

s=c2−i∞

Γ
(
1
2
− s
)

Γ
(
s+

∑L
l=1 zl + 1

2

)
s

( a
2b

)s
ds,

I2,EGC(a, b) =

2L−1√
bπ
∏L

l=1 Γ(µl)
H0,1;1,1;1,1;...;1,1

1,1;1,2;1,1;...;1,1


a/2b

Lµ
1/α1

1 /bζ̂1
...

Lµ
1/αL
L /bζ̂L

∣∣∣∣∣∣∣∣∣
(1/2; 1, 1, . . . , 1) (1, 1) (1, 2) . . . (1, 2)
(0; 0, 2, . . . , 2) (1/2, 1), (0, 1) (µ1, 1/α1) . . . (µL, 1/αL)



TABLE XI
BASIC FUNCTIONS USED FOR DBPSK AND NC M -ARY FSK MODULATION, THEIR MELLIN TRANSFORMS AND THE

CORRESPONDING I-FUNCTIONS.

g(ζ) Mellin Transform and corresponding I-function

e−bζMRC

ML{g(ζ)} =
L∏
l=1

b−zlΓ(zl),

I0,MRC(b) =
L∏
l=1

1

Γ(µl)
H1,1

1,1

(
µ
1/αl
l

bζ̂l

∣∣∣∣∣ (1, 1)
(µl, 1/αl)

)

e−bζEGC

ML{g(ζ)} =
2L
√
π

Γ
(∑L

l=1 zl + 1
2

) L∏
l=1

(4b/L)−zlΓ(2zl),

I0,EGC(b) =
2L
√
π∏L

l=1 Γ(µl)
H0,0;1,1;...;1,1

0,1;1,1;...;1,1

Lµ
1/α1

1 /4bζ̂1
...

Lµ
1/αL
L /4bζ̂L

∣∣∣∣∣∣∣ − (1, 2) . . . (1, 2)
(1/2; 1, . . . , 1) (µ1, 1/α1) . . . (µL, 1/αL)


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