[image: image1.png]

Cairo University

Faculty of Computers and Information

Information Systems Department

Database Systems 1

Section 4
SQL – DML 3

(Aggregations and Nested Select)

Example 1: “Use of Column alias, [] if the table/column name contains space, and introducing the group by clause”
Get the product id , total number of orders related to this product. Give suitable name(s) for any unnamed displayed column(s).
USE Northwind
SELECT ProductID , COUNT (OrderID) AS NumebrOfOrders
FROM [Order Details]

GROUP BY ProductID
Comments:

1. All the columns, other than the aggregate function, should be included in the gourp by clause. If not, the DBMS will give you an error. In the example, the GROUP BY will give you one value (the numer of orders) for each ProductID.

2. Of course, if we have a column with an aggregate function in the select caluse, we have to write a GROUP BY clause. Otherwise, an error will be given because we are trying to tell the DBMS to show ProductID “Multipe Values” next to an aggregate function COUNT “One Value/Group” next to each other.

3. If we removed both the column(s) in the select and the GROUP BY. The COUNT will get us the total number of orders.

Example 2: “Use of order by with the group by clause – using the column Elias”
Diplay the name of each category and the total number of products in each category. Give suitable name(s) for any unnamed displayed column(s). Start by displaying categories with the highest number of products.
USE Northwind
SELECT CategoryName , COUNT (ProductID) AS NumberOfProducts

FROM Products INNER JOIN Categories

ON Products.CategoryID = Categories.CategoryID

GROUP BY CategoryName

ORDER BY NumberOfProducts DESC
Comments:

1. ORDER BY, is used to enforce a specific order of the result either descendingly (DESC) or ascendingly (ASC) which is the default if nothing else is specific. You can use any of the columns of the table or any of the aliases you wrote in the query, when you sort the reults using the ORDER BY clause.
2. If you want to sort the reults using more than a column in case you have repeated values, you can do it by putting “,” after each coumn along with the sorting method (DESC/ASC). For the previous example, ORDER BY NumberOfProducts DESC, CategoryName ASC. This means that the CategoryName will be the tie breaker in case the reults contain repeated NumberOfProducts.
Example 3: “The HAVING clause”
Get the supplier names (Contact names) and the total number of supplied products for each supplier , for only those suppliers that supplied more than 3 products. Give suitable name(s) for any unnamed displayed column(s).
USE Northwind
SELECT ContactName , Count (ProductID) AS NumberOfSuppliedProducts

FROM Products INNER JOIN Suppliers

ON Products.SupplierID = Suppliers.SupplierID

GROUP BY ContactName

HAVING Count (ProductID) > 3

Comments:

1. HAVING, this clause could be written only in case you have a GROUP BY clause. It is a filtering condition that will be applied on the reults after they are grouped. It is mainly used to filter results after applying the Group BY clause, based on aggregate functions’ conditions.
2. If the HAVING is used to filter results based on simple conditions (using columns without aggregate functions nor aggregated restuls), we should put these conditions in a WHERE clause before applying the grouping.
Example 4: “Using Sub-queries in the where clause - IN”
Display the first name, title and country of all employees who are living in UK and have the same job (title) as Janet or Steven. Sort the result by the first name of the employees in a descending order.

USE Northwind
SELECT FirstName, Title, Country

FROM Employees

WHERE Country = 'UK'

AND Title IN (SELECT Title

 FROM Employees

 WHERE FirstName IN ('Janet', 'Steven'))

ORDER BY FirstName DESC
Comments:

1. A professional database developer shouldn’t use subqueries unless it is necessary because of the cost associtated with executing it. If we can’t answer the query using joins, then we can use the sub-query facility.

2. Using IN with sub-queries could be very tricky. In the above example, the DBMS will exit the subquery once if finds a title matching the condition, which is the result we need here.
Example 5: “Using Sub-queries in the where clause - Exists”
Get the Names of customers who have not placed any orders in the last 15 days.
USE Northwind
SELECT Customers.CompanyName
FROM Customers
WHERE NOT EXISTS

(SELECT Orders.OrderID

 FROM Orders

WHERE Orders.CustomerID = Customers.CustomerID

AND Orders.OrderDate > Date() - 15)

Comments:

1. EXISTS condition is considered "to be met" if the subquery returns at least one row.
2. NOT EXISTS is satisfied if no rows are returned by the subquery.
The difference between using IN/ EXISTS
EXISTS always returns TRUE or FALSE and it will return TRUE as soon as it finds only a single matching row in the subquery, or FALSE, if it find none. Therefore, NOT EXISTS will return TRUE only if no row is returned from the subquery.
NOT IN, however, behaves differently.
IN predicate (unlike EXISTS) can either return TRUE, FALSE or NULL
· TRUE is returned when the non-NULL value in question is found in the list

· FALSE is returned when the non-NULL value is not found in the list and the list does not contain NULL values

· NULL is returned when the value is NULL, or the non-NULL value is not found in the list and the list contains at least one NULL value.
So, you should consider using EXISTS/NOT EXISTS if your subquery has some null values. Otherwise, you can use IN/NOT IN.
Example 6: “Using Sub-queries in the from clause”
Show the product ID and name in addition to the number of distinct customers bought this product.
USE Northwind
SELECT Products.ProductID, Products.ProductName, Count(Q.CustomerID) AS NumberOfCustomers

FROM

 (

SELECT DISTINCT ProductID, CustomerID

 FROM Orders INNER JOIN [Order Details] ON Orders.OrderID = [Order Details].OrderID

) AS Q

INNER JOIN Products ON Q.ProductID = Products.ProductID

GROUP BY Products.ProductID, Products.ProductName
Comments:

1. Mainly we use this way to shrink the size of the table and decrease the cost of working with the whole table (considering all columns in it). So, we choose only the set of columns we need from the table(s) related to our query.

2. As shown in the above example, we can give an alias to the subquery and use it in the main query.

1
PAGE
4

