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Abstract

A new algorithm for form tolerance evaluation has
been developed. Evaluation of the minimum tolerance zone
is formulated as an optimization problem following the
definitions of geometric tolerances in the current ANSI
standards.  The algorithm utilizes the experimental
optimization techniques and the combinatorial nature of
orthogonal arrays to plan the experimentation and
evaluate the minimum tolerance zone. The approach is
applied to 2-dimensional features tolerances such as
straightness  and  circularity  (roundness) and
3-dimensional features such as flatness. The obtained
results are compared with other approaches using the Least
Square method, the constrained optimization technigues
and the Convex Hull approach.
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1. Introduction

In any manufacturing process, features deviate
systematically or randomly from their ideal form, size or
position. In order to ensure acceptability of parts, features
must be manufactured within predetermined design limits
defined by dimensions and tolerances. Geometric
tolerances are used, in this paper, as defined by the ANSI
Geometric Dimensioning and Tolerancing Standard, Y
145M [1, 7, 8, 10]. The minimum tolerance zone is one
measure of conformance of manufactured features with the
ideal ones. A set of measurements iS taken using
Coordinate Measuring Machines. The tolerance zone
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deviations determine the parts acceptance or rejection. In
this article, a new algorithm is given to evaluate the
minimum zone deviations based on a set of discrete
measurments using CMM.

Three techniques were investigated for evaluating the
minimum tolerance zone, namely the Monte Carlo
technique, the Simplex search technique and the Spiral
search technique. In the Monte Carlo technique, the
minimum zone mean surface is assumed to lie close to the
Least squares mean surface and within the deviation zone
obtained by the Least squares method. The value of
variables defining the surface were selected randomly to
determine the actwal minimum zone. The minimum
deviation is calculated for each variable. One
disadvantage, however, is the possibility of missing the
actual minimwn because of this random selection of
variables. When the number of variables increase, a more
suitable method such as the Simplex Search method would
be needed.

The Simplex Search is a sequential gradient method
designed to climb mathematical hills and valleys. Three
points are initially chosen (for 2-D cases) such that they are
equidistant, forming an equilateral triangle. The value of
the objective function is evaluated at the three vertices. The
algorithm rejects the point with the lowest value of
objective function and replaces it by another point. The
process is repeated until the region containing the desired
optimum is attained. When the number of variables is
small, the Spiral Search technique is used to scan the design
space for the absolute minimum. The search commences
in a spiral manner around the Least squares solution. This
technique has been used for circles and planes and also in
conjunction with the Simplex Search technique [5, 6).



Four commonly used algorithms were analyzed with
particular emphasis on the effects of errors in measuring the
data points on the resulting plane. These are: the exact fit
algorithm, the best of exact fits algorithm, the average of
exact fit algorithm and the least RMS plane [4].

Traband et al. summarized the problems in using the
Coordinate Measuring Machines (CMMs) [9]. The
majority of CMMs depend on point sampling to evaluate
the specified dimensions and tolerances. The basic
requirements of CMM software and their validation using
virtual volumetric standards were discussed.

A methodology was proposed to evaluate two of the
ANSI - geometric form tolerances: straightness and
flatness using the concept of Convex Hull algorithm [9].
ElMaraghy et al. focused on the development of
procedures and algorithms for the systematic comparison
of geometric variations of measured features [2].

A general algorithn was proposed by Dhanish and
Shunmugam to approximate the real function using linear
Chebychev approximation. The algorithm was coupled
with the exchange algorithm to exclude a point during the
search [1].

This paper deals with different techniques for
assessing and evaluating geometric errors. It also includes
a new approach which makes use of the combinatorial
nature of orthogonal arrays and experimental optimization
techniques to plan the search for the minimum tolerance
zone. This article is organized in five sections; section 1
reviews the related work; section 2 introduces the proposed
methodology in detail; and section 3 presents some
applications for 2 and 3—dimensional features. The
algorithm and its adaptation as a special case are also
presented in section 4. Results obtained using the Least
Squares method , the Convex Hull approach , constrained
optimization techniques as well as CMM measurments
results are also included for comparison. Discussions and
conclusions are finally included in section 5.

2. Methodology

The algorithm developed, in this article, uses
orthogonal arrays and experimental optimization
techniques to approximate the actual features from a set of
discrete measurments using automated measuring
machines. An evaluation criterion is needed to determine
the minimum zone deviation of 2-and 3-dimensional
features. Let y; be a function representing the ideal forms
of engineering features such as straightness and circularity
(2-D) and flatness, cylindricity and spherecity (3-D).
Assuming that the actual function is ¥, the problem can
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now be stated in an optimization form as:
Minimize Y ¢, = y;, — ¥,

The form error can be computed as:
FormEmors =1 €ppy | + | €n | (2)

Where | en land | ey, |refer to the maximum
and minimum errors of the ideal and measured features.

Orthogonal arrays allow design variables to be
changed with other design parameter settings an equal
number of times. We have to distinguish between design
parameters and their settings. The designer can determine
the value of error function for each combination of design
parameter settings. This can be explained using an
example. Fig. 1.a shows an L9 OA with X; & X; astwo
design parameters. Each design parameter has three design
levels or design parameter settings. In this case, we can
write X11, X12 and X3 to represent the design parameter
settings of parameter 1. Similarly, X2 can be written as
X21, X22 and X723 to represent the first, second and third
design parameter settings of design parameter 2.
Accordingly, nine design parameter setting combinations
canbe listed. These are: X1 and X31, X11 and X33, X1 and
X23, X12and X21, Xy2and X22, X2 and X23, X33 and X2,
X13 and X2; and finally X13 and X33. This is exactly the
case if an L9 OA (2-3 two-three level design parameters
and 9 experiments) was used.

The algorithm picks the design level and design
settings which minimize the combined form error. New
design levels and settings are generated by shifting the
design setting by + 4. The objective function is evaluated

at these new design levels and design settings. The
algorithm picks the design levels and settings which yield
the lowest combined errors. The search proceeds until
either the 4 used for design level generation is very small
(= 1.0E~-9) or the objective function does not
decrease after a sufficient number of iterations. The
minimum tolerance zone is evaluated in this last iteration.
Fig. 1. b shows a representation of the design search
problem with one minimum at node 9.

When there are two points with equal minimum
function value, they will have different search directions.
For instance, let point 2 and 8 have the same minimum
function value, using an L9 OA, Then point 2 has a search
direction of X1 and X2 and point 8 has a search direction
of X;3and X22. I ( X;; , X ) is used as a starting
point, the design level construction will result in nine new
search  points. These are (X;; — 4,X,, — 4),
X, - A.Xn)- Xy - 4,Xy, + 4), X1, Xy, — 4),

(1)



X1, X, X1, Xn + 4), Xy + 4,X5, — 4),
Xy, + 4,X5) and (X, + 4,X,, + A) for points 1, 2,3, 4,
5,6,7, 8 and 9 respectively. If point ( X;5 , X, )isused
as a starting point, design level construction will result in
nine new search points. These are (X3 — 4,X,; — 4),
X3 - 4,X), (X3 — 4, X, + 4), X3 X5, — 4),
(X1, X0, X3, X3y + 4), (X33 + 4, X, — A),

X3 + 4,X) and (X5 + 4,X,, + 4) for points 1, 2, 3,
4, 5,6, 7, 8 and 9 respectively. Fig. 1l.c shows a
representation of the design search problem with two equal
minima at nodes 5 and 8. Clearly, the two searches using
point 2 or 8 are different and could lead to different
minimum zone evaluation. A modified algorithm (number
2) is used to deal with cases when there are two of more
design points with equal minimum. Each point is searched
individually and the minima are compared. This is
equivalent to the usual exhaustive search techniques in
numerical optimization.

T“:‘ X, X, X.X, X.X,
1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 1
6 2 3 1 2
7 3 1 3 2
8 3 2 1 3
9 3 3 2 1
% o X, . X, 0 *:

Fig. 1.a Layout Assignment Using L9 OA
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Fig. 1.b Representation Of The Design Search Problem
With One Minimum At Node # 9
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Fig. 1.c Representation Of The Design Search Problem
With Two Equal Minima At Nodes # 5 and 8

3. Straightness

Fig. 2 shows the measurments of straightness errors
from a reference line. The data representing the

straightness measurments are given by (X,Y). The
reference line is given by:
Y, = a X, +c¢ 3
The error, e, is expressed as:
e = Yi _(a X,' +C) (4)

for a feature aligned with the X-axis.

A

€max

€min

Reference Line
Yi = da X,' +c
 _

X;

Fig. 2 Evaluation Of Straightness Errors
Now, given the measured surface points, it is required
to estimate a and ¢ such that Z €, is minimum,

Results from the Orthogonal-based-algorithm are
compared with others using the Least Squares and the
Convex Hull algorithm. As can be seen from Table 1, the
algorithm developed in this paper yielded results which
differed only by 0.0011 % , 4.3522 % , 0.418459 % and
1.017809 % for examples 1, 3, 4 and 5 respectively from
those obtained using the Convex Hull algorithm. In



example 2, the minimum zone calculated using the
orthogonal-based-algorithm is 30.0 % higher than those
obtained from the Least Squares and Convex Hull
approach. This is due to the fact that only 10 points are used
for evaluation. The coordinate measurments data range
from 2.428 t0 4.303. In examples 3 and 4, results from the
orthogonal-based-algorithm coincide with the CMM
measured zones [9]. The efficiency of the
Orthogonal-based—algorithm is measured in terms of CPU
and the number of iterations to reach the minimum zone.

4. Flatness
Fig. 3 shows the measurments of flatmess from a
reference plane. The reference plane is given by:
¥ 5
Where a and ¢ are the slopes on the X and Y axis

respectively and Zo is the intercept on the Z-axis. The
3-dimensional measurments are given by (X, Y, Z).

= Z + aX,"‘CY‘

z A

PX,Y,2Z)

Z;

—

X
o

X;

Fig. 3 Evaluation Of Flatness Errors
An L27 OA is used to plan experimentation for the

minimum zone evaluation with a, c and Z. assigned to
columns 1,2 and 5 respectively. Points (~1.0, 0.0, -1.0) are
used as a starting point for search.

Tables 2 includes the results for the calculated flatness
tolerance zones using the Least Squares, the Convex Hull
and Orthogonal-Based—algorithm. Five examples are used
with data point measurments as given in reference [9]. In
examples 1, 2 and 5, the tolerance zones calculated
according to the Orthogonal-based-- algorithm are smaller
4.72%, 37.72% and 9.25%) than those calculated using the
Least Squares method. In examples 3 and 4, the differences
between our results, and those calculated by the Least
Squares and the Convex Hull method are 1.023%, 6.776 %
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and 11.780 %, 17.0155% respectively (for example

0.1875 = 0.1856 y100 — .
L1595 1220X100 = 1.023%). The CPU time

(second ) and the number of iterations for the five example
problems are also given.

5. Circularity
The circularity measurments are given by (r;,0),
where r; is the radial deviation from the measunment
reference circle at an angle 6;. The reference circle is
given by
Y, =71, + X, cos8;, + Y, sin@;, (6)
Where r, is the radius and (X,, Y,) is the centre. Fig.

4 shows the coordinate system for circularity error
evaluation. An L27 OA is used to plan experimentation for

r,, X, Y,calculationwith X, Y,and r, assigned
to columns 1, 2 and 5 respectively. Point (1.0, 0.0, 1.0) is
used as a starting point for search. It is realized that 7,
cannot take a negative value. In this case, another point
(1.0, 2.0, 3.0) is used to search for the optimum value of

r,. Table 3 lists the results for two example problems
used to compare the orthogonal-based algorithm with the
Least Squares and the constrained optimization methods.
The orthogonal-based algorithm gave results very close to
those calculated by the Least Squares method and the
Simplex search techniques (15.22% and 26.21% for the
first example, 0.3185 % and 4.467% for the second
example respectively).

Fig. 4 Evaluation Of Circularity Errors
6. Algorithms

6.1 Algorithm 1

1. Assign the number of constants (a and ¢ in case of
straightness ) to a suitable orthogonal array (preferably L9
OA).



2. Pick a starting point for the algorithm to start with. Here,
(a,¢)=(0.0,0.0) is a good choice.

3. Take a design level of 1.0. Therefore, a and ¢ will have
9 design level combinations.

4. For each design level i (i=1, 9), determine the
difference between the perfect feature form and the
individual measured points.

5. Calculate ) ¢; = ¢; = [V X 8y ).

6. Pick the point (i = 1, .... 9) with the smallest sum of
errors. This point is used as the basis for the next search
point. It is possible to have two or more points with the
same sum of errors. Each point refers to a different search
direction and different zone evaluation. The smallest zone
is the minimum zone. This is described in algorithm 2.
6.2 Algorithm 2

1. Follow steps 1. to 5. in Algorithm 1.

2. Pick point (i = 1) and start the search. This point will
serve as one design level. The other two design levels are
i + 1 and i~1 respectively. Pick the design point that gives
the smallest combined maximum error. This point will be
the next search point. The smallest zone at the end is the
minimum zone. This procedure is repeated for the other 9
points. Select the minimum of the resulting 9 zones.

Orthogonal arrays are used to plan the minimization
search using experimental optimization. An L9 OA (2
design parameters and 9 experiments) is used to evaluate a
and c in the case of straightness. For instance, an L9 OA
is used to evaluate the minimum straightness zone with a
and ¢ assigned to columns 1 and 2 respectively. AnL27 OA
is used to plan experimentation in case of flatness,
circularity, cylindricity and sphericity with (a,c¢,z,),
Xp Yo 7 ), Xon Yon G, C, 7,) and (X, ¥,,2,,7,) assigned to
columns (1,2, 5),(1,2,5),(1,2,58,11)and (1, 2, 5, 8)
respectively. Results related only to straightness, flatness
and circularity are included here due to space limitations.

7. Conclusion

A new algorithm for form tolerance evaluation using
orthogonal arrays and experimental optimization
techniques has been developed. The new algorithm is
applied to the problem of minimum tolerance zone
evaluation. It uses the combinatorial nature of orthogonal
arrays to detect the design level settings that minimize the
deviations of a fitted surface based on a set of measurments
from the ideal one. The algorithm is applied to
two-dimensional features such as straightness and
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circularity tolerances as well as three—-dimensional features
such as flatness tolerances.

In most cases stdied, the developed
Orthogonal-based algorithm yielded results that are either
smaller or very close to the minimum tolerance zones
calculated using the Least Squares method. The new
algorithm is validated by comparing its results with others
using the Least Squares method, the Convex Hull
algorithm, the constrained optimization techniques and the
Simplex search techniques. As such, the
orthogonal-based—-algorithm can be used as an additional
design tool for evaluation of the minimum tolerance zones.
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Example Least Squares Convex Hull CMM Zone Orthogonal BasedAlgorithm
Number | Tolerance Zone  Zome [9]
9,10
: ] a c Tolerance Zone CPU (sec) I‘ilmummberim:f
1 24010 2.1213 -0.9999 2.000 2.1213 - 19
2 0.8877 0.8479 0.2951 2.3006 1.1587 20.7 508
3 5377 5.186E-3 7.30E-3 2.1068 -4.6172 54117 5.60 138
E-2 E-3 E-3 E3
4 1.463 1.311E-3 1.50E-3 0.1251 -0.3121 1.3055 1.70 31
E-3 E-3 E-2 E-3
5 0.1706 0.1646 0.0279 -0.0283 0.1662 3.0 65
Table 1 Evaluation Of Straightness Tolerance Zones
Example | Least Squares Orthogonal Based Algorithm
Tolerance Zone Convex Hull
Number [9.10] Tolerance Zone [9] CMM Zone Tolerance N‘em;tt)ler of
a b z Zone CPU(sec) lNerations
1 2.800 2.000 -0.6666 0.6666 26666 26678 18.10 156
2 9.1797 6.2343 00105 0.0426 4.7372 57168 6.80 49
3 0.1856 0.1756 0.1120 0.0448 -0.0920 0.1875 2.70 17
4 4381E-2 4.185 447E-2 03629 -00156 —0.4882 4.8971 3.80 30
E-2 E-2 E-1 E-2
5 3.033E-3 2.817 660E-3 _01966 0.1272 08434 27524 100 73
E-3 E-3 E-3 E-3 E-3
Table 2 Evaluation Of Flatness Tolerance Zones
Least Squares [ 7, 8 ] Constrained Optimization [ 10 ]
Tolerance Zone=2.457 Tolerance Zone=2.243
Orthogonal Based Algorithm
Number of
r, X, Y, Zone  CPU(sec) iterations
2.5855 0.5837 1.4162 2.8311 40.60 407
Least Squares [7, 8 ] Simplex Search Technique [ 5]
Tolerance Zone=1.0008 Tolerance Zone=0.9550
Orthogonal Based Algorithm Number of
r, X, Y, Tolerance Zone CPU ( sec) iterations
16.0197 -2.2625 -0.5961 0.9976 1334 818

Table 3 Evaluation Of Roundness ( Circularity ) Tolerance Zones
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