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Abstract deviations determine the parts acceptance ar rejection. In 

A new algorithm for form tolerance evaluatwn has 
been developed. Evaluation of the minimum tolerance wne 
is formulared as an optimizatwn pmblem following the 
definitions of geometric tolerances in the current ANSI 
srandanls. The algorithm utilizes the experimental 
optimization techniques and the combinatorial nature of 
orthogonal arrays to plan the experimentation and 
evaluate the minimum tolerance wnt. The approach is 
applied to 2-dimemwnal features tolerances such as 
straightness and circular@ (roundness) and 
3-dimensional features such asjlutness. The obtained 
results are compared with other approaches wing the Luast 
Square method, the constrained optimization techniques 
and the Convex Hull approach, 
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1. Introduction 
In any manufacturing process, features deviate 

systematdy ar randomly from tbeir ideal form, size 01 

position. In order to ensure ampbbdity of par&, fa- 
must be manuhtured within predetermined M i  limits 
defined by dimensions and tole”. Gmnetrk 
tolerances are used, in this paper, as defined by the ANSI 
Ge~metric Diimensioning and Toleranchg Staadard Y 
14.5M [I, 7, 8, 101. The minimum tolerance zont is one 
measure of conformance of manufactured featclreCS with the 
ideal ones. A set of measurenaents is taken using 
Coodinate Measuring Machines. The toletance zone 

this article, a new algorithm is given to evaluate the 
minimum UHK deviatians based on a set of discrete 
“ e n 6  using CMM. 

lhree techniques were investigated for evaluating the 
minimum tolerance zone, namely the Monte Carlo 
technique, the Simplex search technique and the Spiral 
search tecbniq~. In the Monte Carlo technique, the 
minimum zone mean surface is assumed to lie close to the 
Least squares mean surface and within the deviation zone 
obtained by the Least squares method. “e value of 
variables defining the surEace were selected randomly to 
dekmine the actual minimum zone. ”be minimum 
deviation is calculated for each variable. One 
disadvantage, however, is the possibility of missing the 
actual minimum because of this random selection of 
variables. when tbe number of variables increase, a more 
suitable method such as the Simplex Search metbod would 
beneebed. 

The Simplex Search is a sequential gradient method 
designed to climb mathematical hills and valleys. Three 
points ~lce initially chosen (for 2-D cases) such that they are 
equidistant, forming an equilateral triangle. The value of 
the objective function is evaluated at the three vertices. The 
algultbm rejects tbe point with tbe lowest value of 
objective fimctim and replaces it by another point. The 
process is npeated until the region mtaining tbe desired 
optimum is  attained. When the number of variables is 
small, the Spiral Search technique is used to scan the design 

in a spiral manner m u d  the Least squares solution. Thii 
technique has been used for circles and planes and also in 
amjunction with the Simplex Search technique [5,6]. 

spiace for the absolute “um. Tbe search c0”enCes 
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Four cummonly used algorithms were analyzed with 
particulateanpbasisontheeffcctsofemMiinmeasurfngthe 
darapointsontheresultingplane. ”e are:theexactfit 
algorithm, the best of exact fits algorithm, the av-e of 
exact fit algorithm and the least RMS plane 141. 

Traband et al. s- * tbe problems in using the 
Coordinate Measuring ”es a (CMMs) [91. The 
majority of CMMs depeod on point sampling to evaluate 
the spe&iied dimensions and toleraaces. Tbe basic 

virtual volumelric standanl6 werediscussed. 
A methodology was ptopoeed to evaluate two of the 

ANSI - geometric form tolt!aances: straighmess and 
flatness using the collcept of Coovex Hull algaithm 191. 
ElMaragby et al. focused on the devclment of 
procedures and algorithms for the systematic cumparison 
of geometric variatioos of measured features [21. 

A general algorithm was pnrposed by Dhanish and 
Shunmugam toapploximate thereal function Using linear 
chebycbev approximation. Tbe algoritbm was coupled 
with the exchange algorithm to exclude a point during the 
search r11. 

This paper deals with Memt techniques for 
assessing and evaluating geometric e”. It also includes 
a new appraach which malres use d t h e  combi“ial 
nature of orthogonal arrays and experimeatal optimization 
techniques to plan tbR search for the mini” tolerance 
zone. This article is organized in five sections; section 1 
reviewstberelatedwork; section2introducestheproposed 
methodology in detail; and section 3 presents sane 

The 
algonrhm and its aaaptation as a special case are also 
presanted in section 4. REsults obtained using the Least 
Squares “I, tbe Convex Hull approach, amstrained 
optimimtion techniques 88 well as CMM measurments 
results are also included for canparison. Discussions and 
conclusions are finally included in section 5. 

2. Methadology 
The algorithm developed in thb article, uses 

orthogonal mays and expexhmtal optimization 
techniques to approximate tbe actual features from a set of 
discrete “ m a  using autmated measuring 
machines. An evaluaticm uiwm is needed to determine 
the minimum eone deviation of zand 3-di”ional 
features. Letqibeafunctionreq”tingthe idealforms 
of engiosering features such as straightness and circularity 

~ssirmingthattbeactual fuoaioo is ii, tbepoble~ncan 

requirements of CMM software and their validation using 

applications for 2 md 3 4 i m e  features. 

(2-D) and flamess, CylinatiCity rrod Q M t y  (3-D). 

now be stated inan optimizatioa form as: 

( 1 )  
’Ibefm emwcanbe compltedas: 

FonnErras=I e- I + I e* I ( 2 )  

and minimum em#s of the ideal and measured features. 

~inimize Cc, = ryi - tj i  

Where I e, land I cnh lrefer to the maximum 

orthogonal arrays allow design variables to be 
changed with other design parameter settings an equal 
numbex of times. We have to distinguish betwcen design 
paraaneteasandtheirsettings. Tbedesigaercandetennine 
the value of erroT funuim for eacb c”” of design 
paramem settings. ’This can be explained using an 
example. Fig. 1.a sbows an L9 OA with Xi & X2 as two 
design parameters. Each design p ” e t e r  bas three design 
levels or design p”eter settings. In this case, we can 
write X11, Xi2 and Xi3 U) represent the design parameter 
settings of parametes 1. Simiiy, X2 can be written as 
x21. X Z  and xa to represent tbe Arst, second and third 
design parrrmeter settings of design paramem 2. 
Accordingly, nine design parsmeter setting c0”mations 
can be listed. ’Ihesem: Xi1 andX21, Xi1 and X2z. Xi1 and 
Xa, XizandXzi,XizaadXz, XizandXz3, Xi3andXz1, 
xi3 and X z  and M y  Xi3 and X23. This is exactly the 
case if an L9 OA (23 two-three level design parameters 
and 9 experiments) was used. 

The algorithm picks the design level and design 
settings which minimize the combined fonn e m .  New 
design levels and settings are generated by shifting the 
design setting by f d. Tbe objective function is evaluated 
at these new W i n  levels and design settings. The 
algorithm picks tbe design levels and settings which yield 
the lowest combined e“. Tbe search proceeds until 
either the d used for design level gewratim is very small 

( -  1 . OE - 9 ) or the dbjective function does not 
decrease after a sufficient number of iterations. The 
minimum tolemnce z o l ~  is evaluated in this last iteration. 
Fig. 1. b shows a xepsentation of tbe design search 
problem with one minimum at node 9. 

When there are two points with equal minimum 
function value, they will have different search directions. 
For itlstance, let point 2 d 8 have the same minimum 
function value, using an L9 OA Then point 2 has a search 
directionof Xi1 and XZ and point 8 has aseanhdiiection 
of Xi3 aad Xz.  If ( XI, , X, ) is used as a starting 
point, tbe design level awrsauction will result in nine new 
search points. These are (Xll -d,X22-d), 
(XI, - A , X d ,  (Xi1 - A,Xa + 41, (Xii,Xn - A ) ,  
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(XlbX22X (X11,Xa + 4, (X,l + A?X,, - A)? 
(Xi, +A,X&and(X11 + d , X a  +A)f0rpoints1,2,3,4, 
5,6,7,8and9mpeuively. Ifpoint ( Xi3 , X, )isused 
as a starting point, &sip level umstrucfion will result in 
nine new search points. These iwe (XI3 - A,Xa - A ) ,  
(XI3 - A?x2&?(x13 - dSx22 + A)? (X13,XZZ - 4. 

(X13 + A,X& and (Xi3 + A , X ,  + d)forpoints 1,2,3, 
4, 5 ,  6, 7, 8 and 9 respectively. Fig. 1.c shows a 
representation of the design search problem with two equal 
minima at nodes 5 and 8. Clearly, the two searches using 
point 2 or 8 are different and could lead to different 
minimum zone evaluation. A modified algorithm (number 
2) is used to deal with cases when there are two a: more 
design points with equal minimum. Each point is searched 
individually and the minima are compared. This is 
equivalent to the usual exhaustive search techniques in 
numerical optimization. 

(x11sx~(xl3Sx~ + A)s(x13 + AvX22 - A),  

x, x, .xz x, . x ,  Trial xl 

# 

1 1 1 1 1 
2 1 2 2 2 
3 1 3 3 3 
4 2 1 2 3 
5 2 2 3 1 
6 2 3 1 2 
7 3 1 3 2 
8 3 2 1 3 
9 3 3 2 1 

Fig. 1.a Layout Assignment Using L9 OA 
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Fig. 1.b Representation Of The Design Search problem 
With One Minimum At Node # 9 

x l l  
4 7 

5 8 

6 9 

0 . .  

0 

0 . .  

1 

2 

3 

I I 
XZ 

b 0 

Fig. 1.c Representation Of The Design Searcb Problem 
With Two Qual Minima At Nodes # 5 and 8 

3. Straightness 
Fig. 2 shows the measurments of straightness e m  

f" a reference line. The data representing the 
straightness measurments ~IE given by (Xi,Yi). Tbe 
reference line is given by: 

Yi = a xi + c  

The error, e, is expressed as: 
ei = Yi - (U Xi 

for a feature aligned with the X-ax;. 

+ c)  

Reference Line 
Yi = a x 1  + c  

xi 

Fig. 2 Evaluation Of Straightness Errors 
Now, given the measured surface points, it is required 

to estimate a and c such that 1 ei is minimum. 

Results from the O r t h o g ~ g o r i ~  are 
compared with others using the Least Squares and the 
Convex Hull algorithm. As can be seen tiom Table 1, the 
algorithm developed in this p a p  yielded results which 
differed only by 0.0011 % ,4.3522 % 0.418459 96 and 
1.017809 % for examples 1.3.4 and 5 respectively h m  
those obtained using the Convex Hull algorithm. In 
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example 2, the minimum zone calculated wing the 

obtained from the Least Squares and Convex Hull 
apparoacb. 'zbisisduetothefactthatonly1Opoin$areused 
for evaluation. Tbe cadhate measunnents data range 
from 2.428 to 4.303. In examples 3 and 4, resul~ fnm the 
o r r h o g o n a l ~ ~  coincide with the CMM 
meawred zones [9]. Tbe efficiency of the 
OrthogaaMawhlgorithm is measured in terms of CPU 
and the number of iterations to reach the minimum zone. 

o r t h o g o n a l ~ g ~  is 30.0 96 hi* than those 

4. Flatness 
Fig. 3 sbows the measurments of flamess fnrm a 

reference plane. The reference plane is given by: 

q; = z, + ax, + CY; (5)  

Whereaand c are the slopes an the X and Y axis 

respectively and 20 is the intercept on the Z-axis. Tbe 
3dimensional measunnents are given by (Xi, Yi, ZJ. 

Xi 

Fig. 3 Evaluation Of Flaeness Errors 
An L27 OA is uged to plan experimentation for the 

minimum zone evaluation with a, c and ZO assigned to 
columns 1,2 and 5 respectively. Points (-1.0, 0.0, -1.0) are 
used as a starting point for search. 

Tables 2 includes the results far the calculated flamess 
tolerance zones using the Least Squares, the Convex Hull 
and Orthogonal-Based-algarithm. Five examples are used 
with data point measurments as given in reference [9]. In 
examples 1, 2 and 5, the tolerance zones calculated 
according to the Orthogd-based- algorithm are smaller 
(4.72%. 37.72% and 9.25%) than those calculatedusing the 
Least Squares method. In examples 3 and 4, the differences 
between our results, and those calculated by the k a t  
Sqwres and the Convex Hull method are 1.02396, 6.776 % 

and 11.780 %, 17.0155% respectively (for example 
0.1875 - 0 .  "*XIOO = 1.023%).  be CPU time 

(second ) and the number of iterations for the five example 
problems are also given. 

0 .  1875 

5. circularity 
The circularity measurments are given by (rj,Oi), 

where ri is the radial deviation h m  the measwment 
reference circle at an angle 8; . The reference circle is 
given by 

pi = r, + x, case; + U, sinei (6) 

Where r, is the radius and (X,, Yo) is the centre. Fig. 

4 shows the coordinate system for circularity error 
evaluation. An L27 OA is used to plan experimentation for 

r,, X, Yocalculationwith X, Yoand reassigned 
to columns 1,2 and 5 respectively. Mint (-1.0, 0.0, 1.0) is 
used as a starting point for search. It is realized that r, 
cannot take a negative value. In this case, another point 
(1.0, 2.0, 3.0) is used to search for the optimum value of 

to. Table 3 lists the results far two example problems 
used to compare the orthogonal-l>ased algoritbm with the 
Least Squares and the constrained optimization methods. 
The orthogonal-based algorithm gave results very close to 
those calculated by the Least Squares method and the 
Simplex search techniques (15.22% and 26.21% for the 
first example, 0.3185 % and 4.467% for the second 
example respectively). 

y 4  

Fig. 4 Evaluation Of Circularity Errors 
6. Algorithms 
6.1 Algorithm 1 
1. Assign the number of u " t s  (a and c in case of 
straightness ) to a suitable orthogonal array @referably L9 
OA). 
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2. Pidcastaningpoiatfortbealgarithmtostartwith. Here, 
(a, c) = (0.0,O.O) is a good choke. 

3. Tkke a design level of 1.0. T k e f a ~  a and c will have 
9 design level axnbi” .  

4. For each d e s i  level i (i = 1 , ..... 9). de&” * t h e  
diffmmx between the perfect feature form and the 
individual“Cdp0ints. 

5. ei = $1 - fi(yitxo 0 8 ,  ci). 

6. Pick the point (i re 1, .... 9) with the smallest sum of 
e m .  This point is used as the basis for the next search 
point. It is possible to have two or mote points with the 
same sumofenws. Eacb point d e n  to adifferent search 
diiectiaaanddiffenmzoaeevalutitim. Thesmahtzone 
is tbeminimlnnzane. This isdescribedin algorithm 2. 

6.2 Algorithm 2 

1. Follow steps 1. to 5. in Algorithm 1. 

2. Pickpoint(i= 1)andsulrcthesearch. Thispointwill 
serve as one design level. The othw two design levels are 
i + 1 eod i-1 n#pectiWy. Pick the design point that gives 
thesmallwcambhKd”umesta. Thispointwillbe 
t h e n w r t ~ p o i n t  Tbesmallestuwreattheendisthe 
mini“ zone. Thispoceduteis repeated forthe other9 
poinur. select tbe ”m of tbe m w g  9 uwes. 

orthogonal arrays se used to plan the 
search using axperimartal optimization. An L9 OA (2 
design paramem and 9 expheats) is used to evaluate a 
and cin thecase ofstmightness. For instaoce, an L9 OA 
is used to evaluate the minimum straightness m e  with a 
and c assigned to columns 1 and 2 respectively. An L27 OA 
is used to plan experimentation io case of flatness, 
circularity, cylindricity and spbtricity with (u,c,z,), 
CX, Y, r,), CX, Y, U. c, r,) and (X, Y, z ,  r,) assigned to 
cdumns (1.5 51, (1,2,5), (1 ,2  5,8,11) aod (1,Z 5,131 
respectively. Results related d y  to Straightoess, flatness 
d citculrmrity am included here due to space limitations. 

7, Conclusion 
A new algorithm for form tolerance evaluation using 

orthogonal arrays and experimental o p t h h b n  
techniques has been developed. ’Lhe new algorithm is 
applied to the pmbkm of minimum tolerance zone 
evaluation. It use8 the c o m b i i  aatllfe ot orthogonal 
arrays to dew the aeSign level settings that minimize the 
&xiations of a fitted suface based on a set of measwments 
1Fnnn the ideal ow. The dgdthm is applied to 
kwo-dimenslonal features sucb 85 straightness and 

circuhity tolerances as well as tb” eosionalfcaaaes 
sucbasflrrtaesstrlk”. 

orthogonai-based algaittun yielded iesults that me eitber 
malle€ of Very dcm to tbe mini” tokrancc zone8 

~ u s i n g t b e L e a s t s q u a r e s m e t b o d  Thenew 
algorithm is validated by comparing its results with others 
using the Least Squaaes method, the Convex Hull 
algorithm, tbe ConstrainedopPimLzation tedmiq~rpdrhe 
simplex search techniques. As such, the 
o l t h o g ~ g o r i t h m  can be used 85 an additional 
design tool for evaluation of the minimum t o l e ”  umes. 
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2.4010 2.1213 -0.9999 2.000 2.1213 - 19 

0.8877 0.8479 0.2951 2.3006 1.1587 20.7 508 

5.377 5.186s-3 7.30E3 2.1068 4.6172 5.4117 5.60 138 
E-2 E-3 E-3 EL3 

1.463 1.311E-3 1.5oE-3 0.1251 -0.3121 1.3055 1.70 31 
E-3 E-3 E-2 E-3 

0.1706 0.1646 0.0279 -0.0283 0.1662 3 .O 65 

Example 
"ber 

Table 1 Evaluation Of Straightness Tolerance Zones 

Leastsquares orthogonal BasedAlgorithm 
Number of T~leraoceZOne ConvexHull mbe 

Tolerance 
a b z z4me CPu(Sec) i t e " S  

[9,10] TolemceZone [91 

Number of 
TO XO Yo Tolerance Zone CPU ( sec ) iterations 

Orthogonal Based Algorithm 

16.0197 -2.2625 4.5961 0.9976 133.4 8 18 . 

5 

2.800 2.000 4.6666 0.6666 2.6666 2.6678 18.10 156 

9.1797 6.2343 0.0105 0.0426 4.7372 5.7168 6.80 49 

0.1856 0.1756 0.1120 0.0448 -0.0920 0.1875 2.70 17 

4.381E-2 4.185 4.47E-2 -0.3629 4.0156 -0.4882 4.8971 3.80 30 
E-2 E-2 E-1 E-2 

3.033EC3 2.817 6*60E-3 -0.1966 0.1272 0.8434 2.7524 10.0 73 
E-3 ]E-3 E-3 E-3 EL3 

Table 2 Evaluation Of Flatness Tolerance Zones 

Least Squares [ 7.8 I 
Tolerance Zme=2.457 

constrained optimbtim [ 10 3 
Tolerance zOnee2.243 

orthogonal Based Algorithm 
Number of 

r0 X O  Y O  zone CPU(sec) iterations 
2.5855 0.5837 1.4162 2.83 11 40.60 407 

Least Squares [ 7.8 I 
Tolerance Zooe.. 1 .OOO8 I Simplex Search Technique [ 5 ] 

Tolerams Zone=0.9550 

Table 3 Evaluation Of Roundness ( Circularity ) Tolerance Zones 
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