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Abstract

A new algorithm has been developed which deals with
the problem of least cost tolerance allocation with process
selection. This algorithm uses the combinatorial nature of
orthogonal arrays and experimental optimization
technigues to allocate the magnitude of tolerance to each
design  dimension and select the corresponding
manufacturing process. Interaction graphs are used to
assign the dimensional tolerances to various orthogonal
array structures. The proposed algorithm is capable of
dealing with continuous and discrete cost functions as well
as linear, nonlinear and multi-loop assembly functional
requirements. Several examples are used to illustrate the
effectiveness of the developed technique. Results indicate
the superiority of the developed algorithm with those
obtained using discrete, combinatorial, combined discrete
and continuous and sequential quadratic programming.
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1. Introduction

The problem of tolerance analysis and synthesis has
attracted attention due to its importance for achieving parts
functionality and assembly requirement. The classical
tolerance problem is to minimize manufacturing cost
subject to process constraints. It assumes that each
dimension can be produced by one, and only one, process
and is formulated as a continuous problem. With the
introduction of discrete optimization techniques, the
problem is formulated as a minimization of production
costs with and without precision limits. Each design
dimension can also be produced by one or more processes.

2. Literature Review

Speckhart [9] presented a workable analytical method
for locating the optimum set of dimensional tolerances that
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minimize manufacturing costs and meet the imposed
restraint conditions. A similar approach was presented by
Spotts [7]. Wilde and Prentice [11) showed that the
least—cost allocation of sure—fit machine tolerances for
Speckhart’s exponential cost model can be solved in closed
form without numerical iteration and zero degree of
difficulty. Later, Sutherland and Roth [8] presented design
algorithms that account for the manufacturing cost and
statistical manufacturing tolerance effects for function
generating mechanisms.  Ostwald and Huang [5]
introduced a method for specifying independent functional
tolerances using "Zero — One ’ algorithm.

Wu et al. [10] presented an evaluation of different
algorithms for design tolerance analysis and synthesis. Lee
and Woo [3] used a branch and bound algorithm to perform
tolerance analysis by approximating the volume under the
multi-variate probability density function constrained by
nonlinear stack—up conditions.

Chase et al. [1] presented a discrete optimization
scheme that deals with the combinatorics resulting from
alternative  manufacturing  processes, ranges of
dimensional tolerances and associated cost curves. Zhang
and Wang [12] dealt with the same problem using a
Simulated Annealing algorithm and the results were
compared with the Sequential Quadratic Programming
method (SQP).

3. Methodology

In this article, a new algorithm for tolerance allocation
and optimum process selection is presented. The problem
is viewed as a search in two domains: the first is tolerance
allocation to satisfy the assembly functional requirement
and the second is process—selection to minimize production
cost. The search algorithm couples an inner array
representing the tolerance selection domain and an outer
array representing the process selection domain. The
choice of different structures of orthogonal arrays has a
tremendous impact on the resulting minimum production
cost and the corresponding optimum tolerances. Each



orthogonal array is represented by a search graph which
assists the designer in the initial assignment phase. An
example is used to illustrate the use of inner/outer
orthogonal arrays to allocate tolerances and corresponding
manufacturing processes.
4. Modeling Of Tolerance Allocation With
Process Selection Using An Inner/Outer
Orthogonal Arrays

Consider an assembly problem with two design
dimensions X; and X, using an L9OA (9 experiments
Orthogonal Array) as shown in fig. 1. In this case, X; and
X; will have three design settings corresponding to the
first, second and third levels. Therefore, (Xi1, X2, X13)
and (X21, X272, X23) will correspond to levels 1, 2 and 3 of
design dimension 1 and 2 respectively. For a complete
evaluation of different structures of orthogonal arrays, the
reader is referred to [2].
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Fig. 1 An Inner-Outer Orthogonal Armray and
Corresponding Interaction Graph

The process—cost curves can be modeled using an
outer orthogonal array. For instance, instead of assuming
that each dimension corresponds to only one process, we
will consider three process curves. In reality, each design
dimension can be produced by one or more manufacturing
processes. In addition, each process has precision limits.
These two concerns should be included in the optimization
model. In the outer array, Pq3, P12 & Py3 correspond to the
cost of producing design dimension 1 using processes 1, 2
and 3 respectively. Similarly, P21, P22 & P23 correspond to
the cost of producing design dimension 2 using processes
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1, 2 and 3 respectively.

This logic results in a combinatoric scheme for the
tolerance allocation and process selection problem.
Assume that the designer wishes to choose design levels
Xj1 and X3; (first row using L9 OA), these two design
dimensions can be produced using the following
combinations of cost process curves: a) (P1y, P21); b) (P,
Py2); ©) (Pny, P23); d) (P12, P21 €) (P12, P2) ) (Pr2,
P23); 8 (P13, P21); b) (Py3, P2p) and i) i) (Py3, P23)
respectively. Therefore, the tolerance allocation and
process selection domains are approximated using 9
experiments, in each domain, and 81 combinations.

5. Search Graph Techniques

The four interaction graphs used are presented in this
section. Fig. 2 a shows an interaction graph foran L16 OA.
This array is usually used for 2 and 3 design levels. Design
dimensions are assigned to columns 2 (or 3), 4 (or 5), 8 (or
9) (three-level-designs) and columns 10,11,12 and 13
(two-level-designs) to ensure orthogonality and
independence during the search. This is particularly useful
for mixed two—three cost—process curves.

Fig. 2 b shows an interaction graph for an L.27 OA.
This array is used for three-level-designs with design
dimensions assigned to columns 1, 2, §, 8, 11, 14, 17 and
20 respectively. Fig. 2 ¢ shows an interaction graph for an
164 OA. This array is used for two-level-designs with
design dimensions assigned to columns 1, 2, 4, 8, 23, 16, 32,
45, 27, 42, 52, 14, 15, 28, 29, 30, 49, 51, 46, 35 and 39
respectively. Fig. 2 d shows an interaction graph for an L81
OA. This is used for three-level-design with design
dimensions assigned to columns 1, 2, 5, 14, 26, 29, 35, 38,
9,10, 12, 13, 18, 19, 21, 22, 24, 25, 33 and 34 respectively.
The three design levels  considered  are:
6 — 4,06, 0 + 4, where 4 and A are the
tolerance value and tolerance level difference respectively.
At each iteration 16, 27, 64 and 81 design points are
evaluated to approximate the design space using an L16
OA, L27 OA, L64 OA and 1.81 OA respectively. The
assembly functional requirement is evaluated at each
design point. The design space for the cost-process curves
is approximated in a similar manner. The algorithm selects
the minimum cost—process and the corresponding tolerance
levels are chosen accordingly as the base point for the next
iteration. This procedure continues until an optimum is
reached. This problem formulation depends upon
searching in two domains; however, the size of the
combinatoric problem is much smaller than that
encountered when using the usual exhaustive search
techniques.
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6. Tolerance Allocation With Process
Selection Algorithm
1. Assign the design dimensions to a suitable orthogonal
array. A three level orthogonal array is usually used to plan
experimentation for optimum tolerance selection.
2. Assign process curves to a suitable orthogonal array.
The choice of orthogonal array will depend on the number
of process curves for each design dimension. For instance,
if an assembly with two design dimensions produced using
2 and 3 process curves, a mixed two-three orthogonal
arrays should be used. This allows varying a two-level
design parameter with a three-level design parameter. In
each case, confounding of either design design dimensions
or process curves should not be allowed.
3. The search for tolerance allocation is constrained by: a)
the range of process precision and b) overall assembly
functional requirements. The search for minimum costs
considers one process at a time for each design dimension
and the cost must always be greater than zero.
4. An initial feasible starting point, (called seed), which
has to satisfy assembly functional requirement as well as
process precision limits is used.
5. Let an L9 OA be used to plan experimentation for both
tolerance allocation (i = 1, 9) and process selection (j =
1,9).

fori=1,9,1

forj=1,9,1

minf ( P;; , 8,;) =

ij

min> S (P 8,00

iml jml

subject to:
z P,; . 8;; =1t worstcase analysis
o< g, <o ZP,.- =1

next j;
next i;
Where :
f = Total machining cost of individual tolerances.
4, ; =Manufacturing tolerance of the ith component
dimension produced by process j.
6" , &' =Upper and lower bounds on tolerance o .
n , m =Number of component dimensions and
available processes respectively.
¥( 38; )= Costof producing tolerance 3 on the ith
component by process j.
6. The process continues until an optimum is reached.



7. Examples

The described algorithm has been implemented and
verified using 8 examples A-1 taken from Chase et al.[1].
Table 1a shows the layout assignment for the 8 problems.
The number of dimensions, number of processes, number
of iterations and optimum costs using the
Orthogonal-based-algorithm are given in table 1b. Since
the same problems have been solved using other search
techniques, the optimum cost, number of possible
combination and CPU( time ) are given in table 2 for
comparison. These search techniques include discrete
methods (Balas Zero-One and combinatorial) and
continuous methods (Sequential Quadratic Programming)
and combined discrete and continuous methods. The
algorithm developed in this paper will be referred to as
*Orthogonal-based algorithm’. In problems A-I, the
optimum costs obtained using the Ortbogonal-based
algorithm are less than those obtained using Balas
Zero-One, Combinatorial methods and combined discrete
and continuous methods.

In problem E with 3 assembly loop equations, the
optimum cost obtained is almost the same as those using the
Balas Zero-One and combinatorial methods. The number
of possible combinations vary from 256 to 5184 depending
on the size of inner and outer orthogonal arrays. The trial
combinations performed using the
Orthogonal-based-algorithm are about 12% of those
performed using the Balas algorithm. The CPU ( time )
used by the Orthogonal-based agorithm is generally less
than that used by Balas Zero One but higher than the time
used by the combinatorial methods. In problems H and I,
the Balas algorithm failed to obtain a solution in a
reasonable time.

The optimum costs obtained using Orthogonal-based
algorithm are always higher than those obtained using the
Sequential Quadratic techniques (SQP). This is due to the
ability of SQP algorithm to split each design dimension
between two or more processes. For instance, a dimension
is processed 80% using process 1 and 20% using process 2.
Clearly, this is worthless from manufacturing point of view
as pointed out in [1,13].

The Orthogonal-based algorithm performs very well
for problems with multiple assembly loop equations. For
instance, problem E is solved using two global
optimization search algorithms: the exhaustive and
Univariate methods. Both methods failed to obtain a
solution since they can not handle multiple assembly loops.

8. Conclusion

1. The formulation based on an inner/outer orthogonal
arrays is capable of dealing with the problem of tolerance
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allocation and optimum process selection.

2.  For all problems tested, the Orthogonal-based
algorithm was able to provide solutions better than Balas,
combinatorial methods (discrete ), Sequential Quadratic
Programming and combined discrete and continuous
methods

3. The Orthogonal-based algorithm is capable of dealing
with multi-loop assembly problems. The exhaustive and
univariate search techniques encountered difficulties
during the search and the cost of solution became
unreasonably high.

4. The graph associated with each orthogonal array makes
the layout assignment of either design dimensions or
process—cost-curves systematic. Therefore, the
Orthogonal-based algorithm can be used as an additional
design tools for the problem of tolerance allocation with
process selection.
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B  Dimension Number
@ Column Number

Table 1a Layout assignment for problems A-I

Number of Number of Number of CPU Optimum
Problem A

components processes iterations (second ) cost ($)
A 4 10 23 430 22.2198
B 6 13 4 320 30.0650
C 7 15 3 3.10 19.1370
D 8 19 9 6.20 34.3426
E 8 20 67 38.30 5.1400
F 12 24 20 30.00 80.9461
H 12 36 A 40.50 59.6906
I 13 38 19 31.80 67.3659

Table 1b Efficiency & optimum costs for problems A-I using Orthogonal-based algorithm
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Problem Number Discrete Continuous Orthogonal Based
OfLoops Balas Combinatorial  SQP Combined Algorithm
1 $25.00 $25.00 $2090 $21.20 $22.2198
A Number Of Possible 205 36 335 256
Combinations
CPU time ( sec ) 0.95 0.00 23.05 430
B 1 $ 36.00 $36.00 $2585 $35.00 $ 30.065
Number Of Possible 681 96 512 1296
Combinations
CPU time ( sec) 5.80 0.00 25.85 320
C 1 $31.00 $31.00 $1805 §$3021 $19.137
Number Of Possible
CPU time ( sec ) 15.97 0.030 18.05 3.10
D 1 $40.00 $ 40.00 $31.69  $34.90 $34.3426
Number Of Possible
Combinations 3,275 864 858 1296
CPU time ( sec) 53.68 0.320 31.69 6.20
E 3 $5.110 $5.110 $427 i $5.1403
Number Of Possible
Combinations 10,839 1296 931 1296
CPU time ( sec ) 190.90 0.430 185.92 38.30
H 1 ok $77.00 $54.53 $7454 $59.6906
Number Of Possible - 531,441 2,335 5184
Combinations
CPU time ( sec) ok 213.23 400.35 40.50
1 Hokk 79.00 56.05 76.4 67.
I Number Of Possible $ $ $ 8 §67.3659
Combinations Rk 1,062,882 2,540 5184
CPU time (sec ) el 47097 460.40 31.80
T signify that the search algorithm used could not reach a solution

Table 2 Orthogonal-based-algorithm vs. other tolerance allocation methods
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