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Abstract 
A new algorithm has been developed which deals with 

the problem of least cost tolerance allocation with process 
selection. This algorithm uses the combinatorial m u r e  of 
orthogonal arrays and experimental optimization 
techniques to allocate the magnitude of tolerance to each 
design dimension and select the corresponding 
manufacturing process. Interaction graphs are used io 
assign the dimensional tolerances to various orthogonal 
array structures. The proposed algorithm is capable of 
dealing with continuous and discrete cost functions as well 
as linear. nonlinear and multi-bop assembly fwrctional 
requirements. Several examples are used to illustrate the 
effectiveness of the developed technique. Results indicate 
the superiority of the developed algorithm with those 
obtained using discrete, combinatorial, combined discrete 
and continuous and sequential quadratic programming. 
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1. Introduction 
The problem of tolerance analysis and synthesis has 

attracted attention due to its importaoCe for acheving parts 
functionality and assembly requirement The classid 
tolerance problem is to minimize manufacturing cost 
subject to process constraints. It assumes that eacb 
dimension can be produced by one, and only one, process 
and is formulated as a continuous problem. With the 
introduction of discrete optimization techniques, tbe 
problem is formulated as a minimization of production 
costs with and without precision limits. Each design 
dimension can also be produced by one QT more processes. 

2. Literature Review 
Speclrbart [9] presented a workable analytical method 

for locating the optimum set of dimensional tolerances that 

m i n i  manufactuting costs and meet the imposed 
restraint conditions. A similar approach was presented by 
Spotts [71. Wdde and Rentice [ll] showed that the 
least-st allocation of sum-fit machine tolerances for 
Speckhart’s exponential cost model can be solved in closed 
form without numerical iteration and zero d e p  of 
difficulty. Later, Sutherland and Roth [8] presented design 
algorithms that account for the manufacturing cost and 
statistical manufacturing tolerance effects for function 
generating mechanisms. Ostwald and Huang 151 
introduced a method for specifying independent functional 
tolerances using ‘Zero - One ’ algorithm. 

Wu et al. [ 101 presented an evaluation of different 
algorithms for design tolerance analysis and synthesis. Lee 
and Woo [3] used a branch and bound algorithm to per€orm 
tolerance analysis by appmximating the volume under the 
multi-variate probabllity density function constrained by 
nonlinear stack-up conditions. 

Chase et al. [l] presented a discrete optimization 
scheme that deals with the Combinatorics resulting from 
alternative manufacturing processes, ranges of 
dimensional tolerances and associated Cost curves. Zhang 
and Wang [12] dealt with the same problem using a 
Simulated Annealing algorithm and the results were 
compared witb the Sequential Quadratic Programming 
method (SQP). 

3. Methodology 
In this article, a new algorithm for tolerance allocation 

and optimum process selection is presented. The problem 
is viewed as a search in two domains: the fust is tolerance 
allocation to satisfy the assembly functional requirement 
and the second is processselection to minimize production 
cost. The seatch algorithm couples an inner array 
representing the tolerance selection domain and an outer 
array representing the process selection domain. The 
choice of different structures of orthogonal arrays has a 
tremendous impxt on the resulting minimum production 
cost and the corresponding optimum tolerances. Each 
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orthogonal array is represented by a search graph which 
assists tbe designer in the initial assignment phase. An 
example is used to illustrate the use of innedouter 
orthogonal mays to allocate tolerances flnd corresponding 
m a n u f a c h a i n g ~ S s e S .  

4. Modeling Of Tderance Allocation With 
procesS Seldon Using An Inner/Outer 
OTthogonal Arrays 

Consider an assembly problem with two design 
dimensions X1 and X2 using an L9OA (9 experiments 
orthogonal Array) as shown in fig. 1. In this case, XI and 
X2 will have three design settings corresponding to the 
fmt, secand and third levels. "hemfore, (xii ,  x12, x i3)  
and G21, X22, Xz) will carrespoad to levels 1,2 and 3 of 
design dimension 1 and 2 respectively. For a complete 
evaluation of difletent structures of orthogonal m y &  the 
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Fig. 1 An Inner-Outer Orthogonal A m y  an 
Corresponding Interactioa Graph 

'Tbe process-cost curves can be modeled ILL an 
outer orthogonal array. For instance, mstead of assuming 
that each dimension corresponds to only one process, we 
will consider three process curvm. In reality, each design 
dimension can be produced by one or m e  manufachuing 
processes. In addition, each p.ocess has precision limits. 
These two concems should be included in the optimization 
model. In the outer army, P11, P12 & P13 correspond to the 
a t  of producing design dimensim 1 using processes 1.2 
and 3 respeaively. Similarly, 9 1 ,  E92 & pL3 correspoad to 
the cost of producing design dimension 2 using processes 

1,2 and 3 respectively. 

This logic results in a combinatotic scheme for the 
tolerance allocation and process selection problem. 
Assume that the designer wishes to choose design levels 
X11 and X21 (fmt row using L9 OA), these two design 
dimensions can be pIoduoed using the following 
combinations of cost process curves: a) (Pll, 41 ) ;  b) P11, 
P29; c) (Pu, p23); d) (P12,91); e) (P12,Pd; f )  (Pn, 
p23); g) (Pi39 P21); h) (Pi39 P22) and i) i) (Pi39 P23) 
respectively. Iherefore, the tolerance allocation and 
process selection domains are approximated using 9 
experiments, in each domain, and 81 combinations. 

5. Search Graph Techniques 

Tbe four interaction graphs used are presented in thii 
section. Fig. 2 a shows an interaction graph for an L16 OA. 
This array is usually used for 2 and 3 design levels. Design 
dimasions are assigned to cdumns 2 (or 3). 4 (or 5). 8 (or 
9) (thres-level-designs) and columns 10,11,12 and 13 
(two-leveldesigns) to ensure orthogonality and 
independence during the SearCB. This is particularly useful 
for mixed two-three cost-process curves. 

Fig. 2 b shows an interaction graph for an L27 OA. 
This array is used for three-leveldesigns with design 
dimensions assigned to oolumns 1,2,5,8, 11, 14, 17 and 
20 respectively. Fig. 2 c shows an interaction graph for an 
L64 OA. This a m y  is used for twdevel-designs with 
design dimensions assigned to columns 1,2,4,8,23,16,32, 
45,27,42,52, 14, 15,28, 29, 30,49,51,46, 35 and 39 
respectively. Fig. 2 d shows an interaction gmph for an L8 1 
OA. This is used for three-level-design with design 
dimensions assigned to columns 1,2,5, 14,26,29,35,38, 
9,10,12,13,18, 19,21,22,24,25,33 and 34 respectively. 
Tbe three design levels considered are: 
(r - d , d , 6 + d, where d and d are the 
tolerance value and tolerance level difference respectively. 
At each iteration 16, 27, 64 and 81 design points are 
evaluated to approximate the design space using an L16 
OA, L27 OA, L64 OA and U 1  OA respectively. The 
assembly functional requirement is evaluated at each 
design point. 'Ibe design space for the cost-process curves 
is approximated in a similar manner. The algorithm selects 
the minimum cost-proms and the correspooding tolerance 
levels are chosen accordingly as the base point for the next 
iteration. This procedure continues until an optimum is 
reached. This problem formulation depends upon 
searching in two domains; however, the size of the 
combinatoric problem is much smaller than that 
encountered when using the usual exhaustive search 
techniques. 
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6. Werance Allocation With procesS 
Selection Algorithm 
1. Assign the design dimensions to a suitable orthogonal 
m y .  Athree level orthogoaal array is usually used to plan 
expeaimentation for optimum t o l e "  seledcm. 
2. Assii process curves to a suitable oahogoaai array. 
The cboice of orthogonal m y  will depend cm the number 
of process curves for each design dimension. For instance, 
if an asaembly with two design dime- p"l using 
2 and 3 process curves, a mixed tw- orthogonal 
arrays should be used. This allows varying a tw+level 
design parameter with a threelevel design paramew. In 
each case, amfounding of either design design dimensions 
orprocegs curves shouldnot beallowed. 
3. Tbc 8eBTch for tolefanee allocation is c"i& by: a) 
the range of process plecisivM and b) ovetall assembly 
functional req-ts. ne search for minimum costs 
considers one process at a time for each design dimension 
and the cost must always be greater than zero. 
4. An initial feasible Starting point, (called seed), which 
has to satisfy assembly functional requirement as well as 
pmcessprecisionlimitsisuse& 
5. Let an L9 OA be used to plan experimentation for both 
tolerauce allacation (i = 1,9) and promss selection (i = 
W. 

fori- 1,9,1 
forj=l,9,1 

minf ( Pij  9 d, ,  1 = 

i -1  j -1  

subject to: 

1 pij . d i j  s tL wlwstcasedysis 

b 1 5  dij S d "  pij = 1 

next j; 
next i; 

where: 
f = Total machining cost of individual tolerances. 
di = Manufacturing t o h c e  of the ith compoaent 

dimension produced by process j. 

II , m =Numbexofcompaneotdimensiomand 

y( dv )=Costofproducingtolerance bontbeith 

6. The process continues until an optimum is reached 

b' , 6' =Upperandlowerbo&ontole!fancedij. 

available p.ocesses respectively. 

component by process j. 
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7. Examples 
The desaibed algorithm bas been implemented and 

verified using 8 examples A-I Ealren 6wn Qlase et al.[l]. 
Table la shows tbe layout assignment fw the 8 problems. 
The number of dime" * s, number of processe% number 
of i t e "  and optimum cogts using the 
Orthogdagorinal-bslse6algoritbm are given in table lb. Since 
the same problems have been solved using otlm search 
techniques, the optimum cost, number of possible 
cambiaation and CPU( time ) an given in table 2 fop 
compsuison. These search tecbniquea include discrete 
methods (Balas and comb-) and 
mtinwws mellrods (sequential Quadlaic prosramrmn g) 
and combined discrete aod continuous methods. The 
algorithm & V W  in this papa will be refelTed to as 
'Octhogd-based algorithm'. In problems A-I, the 
optimum cats obtained using the Orthogooal-based 
algorithm are leap than those obtained using Balas 
zera-<)oe, Combinatorial metbods and combined discrete 
andcootinuousmetbods. 

In problem E with 3 assembly loup equations, the 
opti"cQstobtainedisalmoeittbesameasthoseusingthe 
BalasZexdh~eandcasbinatorialmethods. Thenumber 
of possible cumbinatioas vary fran 256 to 5184 &pding 
on the size of inner endouter orthogonal arrays. The trial 
CambinatiooS perfomrea using the 
oftbgonal-gorithm am about 12% of rhos3 
performed using the Balas algorithm. The CPU (time ) 
used by the (3rthogonal-based rrgOrithrm is gemrally less 
than that used by Balas Zero One but higher than tbe time 
usedby the combinatorial~thods. In problems Hand I, 
the Balas algorithm failed to obtain a solution in a 
feasoaable time. 

algorithm ate always higher than t h e  obtained using the 
Sequential Quadratic techniques (SQP). 'Ibis is due to the 
ability of SQP dgdrhm to split each design dimension 
betwemtwo a r ~ p r o c e s s e s .  For instaace, adimension 

Clearly, this is wacthless from manufocturiag point of view 
as pointed out in [1,13]. 

The Orthogonal&& algorithm performs very well 
for problems with multiple assembly loop equations. Foa 
instance, problem E is solved using two global 
optimization searpeb algorithms: tbe exhaustive and 
Univariate methods. Both metbods failed to obtain a 
solution since they cannot bandle multiple assembly loops. 
8. Conclusion 
1. "he fcmnuiatim based on an inoer/outer ortbogooal 
arrays is capable of dealing with the problem of tolerance 

The optimum costs obtained using orthogonal-based 

is processed 8096 USingpacesS 1 and20% using process 2. 

allocationfmdopii"proceapselectioa. 
2. F o r a l l p m b ~ t e s r c d ,  t b e ~ o u a h m d  
algorithm was abb to provide Qolutions betrer tben Belas, 
combinatorial me(h0dS (c.tisaete 1, ~ l I € a l t i a l  Quaatrrtlc 
Programmiag and - discreteaDdamttnuous 
methods 
3. The 0 r t h o g a " d  a l p i t b  is capable of dealing 
with multi-loop assembly p"8. The exhaustive and 
univsriate search techniqves encountered mculties 
during the search and the cost of solution became 
l m " m y h i g h .  
4. The graph awio&ed with each orthogonal m y  malres 
the layout assignment of ut& &sign clhm" ' w  
procaHmt4ufves systematic. llumfmthe 
o r t h o g ~  algorithm can be used as an additional 
design tools for the problem of tol- allocation with 
processseleaioa. 
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9 14 
A B C D E 10 15 

11 16 
12 17 

F 

L160A L160A L160A L16OA L36OA W O A  

DimensimNumber 

ColumnNumber 

e 
1 1  
2 2  
3 5  
4 9  
5 10 
6 12 
7 13 
8 14 
9 18 
10 19 
11 21 
12 22 

H 

L81 OA 

e 
1 1  
2 2  
3 5  
4 9  
5 10 
6 12 
7 13 
8 14 
9 18 
10 19 
11 21 
12 22 
13 24 

1 

L81 OA 

problem 

Table la  Layout assignment for problems A-I 

Numbex of Numberof Numberof CPU optimum 
components processes iterations (second) cost ($)  

4 

6 

7 

8 

8 

12 

12 

13 

10 

13 

15 

19 

20 

24 

36 

38 

23 

4 

3 

9 

67 

20 

24 

19 

4.30 

3.20 

3.10 

6.20 

38.30 

30.00 

40.50 

3 1 .SO 

22.2198 

30.0650 

19.1370 

34.3426 

5.1400 

80.9461 

59.6906 

67.3659 

Table lb  Efficiency & optimum costs for problems A-I Using Orthogonal-based algorithm 
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Problem 

A 

B 

C 

D 

E 

H 

I 

Nlnnber Discrete cmtinuous OrrhogoualBased 
OfLoops Balas Combinatorial SQP C o m b d  Algorithm 

1 $25.00 $25.00 $20.90 $21.20 $22.2198 
Number Of Possible 205 36 335 256 
CombiMtiOns 

CWtime(SeC) 0.95 0.00 23.05 4.30 

1 $36.00 $36.00 $25.85 $35.00 $ 30.065 

Number Of Possible 681 % 5 12 
Combinations 

cPutime(sec) 5.80 0.00 25.85 

12% 

3.20 

1 $31.00 $31.00 $18.05 $30.21 $19.137 

Number Of Possible 
Combinations 1,344 192 37 1 

CPU time ( sec } 15.97 0.030 18.05 

1296 

3.10 

1 $40.00 $40.00 $31.69 $34.90 $34.3426 
Number Of Possible 
Combinations 3,275 864 858 12% 
CPU time ( sec) 53.68 0.320 3 1.69 6.20 

3 $5.110 $5.110 $4.27 ***** $5.1403 
Number Of Possible 
Combinations 10,839 12% 93 1 12% 

CWtime(sec) 190.90 0.430 185.92 38.30 

1 **** $77.00 $ 54.53 $74.54 S 59.6906 

**** 531,441 2,335 5184 Number Of Possible 
Combinations 

CPU time ( sec **** 213.23 400.35 40.50 

1 **** $79.00 $56.05 $76.48 S 67.3659 
Number Of Possible 

Combinations **** 1,062.882 2,540 5 184 

CPUtime(Sec) ****' 470.97 460.40 31.80 

t signify that the search algorithm used could not reach a solution 

Table 2 Orthogonal-based-algorithm vs. other tolerance allocation methods 
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