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ABSTRACT 
In this paper, a new statistical optimization technique is 
proposed.  The technique employs new variance reduction 
schemes (VRTs).   The performance of three standard 
designs:  L27/ L27 OA, L54/ L27 OA and L243 / L27 OA 
are studied. These  designs, although both orthogonal and 
balanced, exhibit high variance reduction  properties with 
questionable convergence in very short number of iterations.  
Four new composite designs are developed, implemented 
and compared with the standard ones.  These designs are 
known as: 5-,  7-, 9- and 11-point composite L27 OA.  The 
problem of  tolerance allocation with  optimal process 
selection is revisited as a case study for simulation.  Results 
indicate the efficiency of these new designs to reduce 
variances to lower levels than standard designs and better 
convergence in fraction of experiments.  These designs are 
then integrated in an optimization algorithm previously 
developed (Gadallah, M.H., 2000).  The algorithm is then 
modified to deal with the least sensitive  optimal  solutions 
for standard and composite designs.  Particularly, the 
parameters that affect the algorithm are varied and their 
effects on performance of algorithm are studied.  A standard 
manufacturing case study is used for analysis and simulation 
results for the composite designs are also given.   
 
KEYWORDS: Simulation, Statistical Optimization, 
Variance Reduction Techniques,  and Least Sensitivity.  
1

BACKGROUND 
Statistical optimization techniques are developed to deal 
with non-deterministic engineering and non-engineering 
models.  Although most systems utilize statistical models for 
detailed analysis, the use of these models in optimization is 
still limited.  In this paper, foundations for statistical 
optimization algorithm are given, particularly the tools used 
to build the search. 
 
Houser and Ishii formulated a statistical optimization based 
on design of experiments  (DOE) and sensitivity index.  This 
index is a combined function of the original function and the 
values at the target points in space.  The study also 
considered the correlation existing between some design and 
manufacturing variables. 
 
Statistical optimization formulations were presented 
analytically using Taguchi Loss function (Rao, S. S. 1991).  
This formulation is derived for analytical objective and 
constraint equality and inequality functions.  This 
formulation assumes the value of variances for any system 
and also the target value for the system performance.  This 
information might not be available for any system.  Besides, 
the method assumes that the analytical form of the objective 
function and/ or constraints is known. Very often, designers 
formulate objectives and/ or constraints from simulation 
experimental data.  The same approach was followed by 
Webb and Parkinson, 1995.  Their work, however, was 
limited to linear variance functions. 
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Ragsdell et al. attempted to formulate statistical optimization 
based on surface modeling and space decomposition 
techniques.  Several matrix decomposition approaches are 
used and their results are compared. 
 
Gould, S. (1989) emphasized that  large-scale simulation 
models are very complex and require long runs.  Accuracy 
levels become unachievable without further complication 
except through the use of VRT.  The application of some 
VRTs to large scale models was investigated and a 
modification to the antithetic variates to suit larger models 
was given.  Results indicated that antithetic variates are not 
really suited for large complex models. 
 
Kleijnen (1996) reviewed 5 related analysis types namely 
sensitivity analysis, uncertainty (risk analysis), screening, 
validation and optimization.  These analysis types are 
evaluated with respect to simulation models.  The study 
points to the fact that there are no standard simulation 
definitions.  Insua et al. presented a similar study on the use 
of sensitivity analysis in statistical decision theory. 
 
Vignaux, G. (1999) mentioned that the value and efficiency 
of VRT depends very much on the characteristics of the 
model.  Several sampling methods, especially Importance 
Sampling, are reviewed.  These methods include Monte 
Carlo method, Common Random Numbers, Antithetic 
Methods, Control Variates, Stratified Sampling and 
Importance Sampling.   
 
Mc Geoch gave a tutorial discussion on the use of Variance 
Reduction Techniques and simulation in algorithm studies.  
The study reviews  other  VRTs  such as conditional 
expectations, simulation shortcuts, splitting and 
stratification.  The author continued to stress the fact that it 
is hard to determine which test to apply to any specific 
algorithm.  Others interested in the subject of variance 
reduction include Trich, M, 1995, Calvin and Nakayama, 
and others. 
 
Kock et al. (1999) elaborated on the problem of size and 
dimensionality with respect to multi-disciplinary design 
optimization.  Two techniques are named, these are the 
experimental design and kriging techniques.  System 
decomposition and multi-level optimization are used to 
tackle the dimensionality problem.    
 
The Response Surface Models (RSM) are exercised to 
explore the design space efficiently.  The incorporation of 
RSM and robust design principles within the compromise 
decision support problem presented a new approach to 
multi-disciplinary analysis.  The CDSP is a multi-objective 
mathematical construct that is a hybrid formulation based on 
mathematical and goal programming.  The CDSP is used to 
determine the values of the design variables that satisfy a set 
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of constraints and achieve as closely as possible a set of 
conflicting goals as is often the case in robust and complex 
system designs. 
 
Lately, Rajadas and Jury used the Kreisselmeir - Steinhauser 
(K-S) function approach as it combines different disciplines 
of the optimization problem.  The objective functions and 
the constraints are combined to form a single unconstrained 
composite function.  The resulting function is solved via any 
unconstrained solver.  In case more than one objective is 
used, appropriate weights are employed to stress the relative 
importance of individual objectives. 
 
Webb and Parkinson discussed the properties and 
optimization of the linear variance function.  The interest is 
to devise a means how variations can be transmitted to 
variables and functions.  Another objective, these functions 
represent engineering systems.  The minimization of these 
functions would result in robust systems to variations.  In 
this study, we are interested in the variance properties of 
certain arrays prior to use as search schemes.   
 
Nigam and Turner reviewed various statistical approaches to 
tolerance analysis problem.  The study considered the 
extension to solid modeling systems and to geometric 
tolerancing standards.  Parkinson presented a similar method 
to deal with uncertainty of design parameters. 
 
We can conclude that statistical optimization techniques are 
very limited in applications for several reasons: 

a. The engineering community does not own sound, 
consistent and rigorous modeling tools. 

b. The engineering community, though believes in 
optimization theories and algorithms as valid and 
useful tools, the integration with the engineering 
science is still far away from being accepted. 

This paper offers developments in several important areas:   
First, in the area of modeling, it models two search domains 
using several standard and non-standard arrays.  The arrays 
developed so far (often called) standard limit the capacity of 
optimization algorithms to deal with large realistic problems.  
In this study, we offer means to construct larger size arrays. 
Second, in the area of simulation, it simulates the problem of 
tolerance allocation with process selection, particularly the 
statistical part of the problem.   
Third, in  the area of statistical optimization, it optimizes the 
problem of tolerance allocation with a study on the variances 
of several given arrays.  
 
THE LEAST SENSITIVE FORMULATION 
The optimization model given in Gadallah, M.H., 2000 is 
modified to adapt the least sensitive optimization problem.  
The cost models for each variable are differentiated with 
respect to each variable.  The process models are varied in 
combinatorial ways using the proposed arrays.  The first 
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derivatives resulted in negative function, we decided to take 
the absolute addition of process functions for minimization.  
Now, the analyst will have the chance to either obtain the 
optimum solution, the least sensitive solution or both 
solutions. 
 
PROBLEM STATEMENT 
This paper offers a study experience on modeling of search 
domains using standard orthogonal arrays.  Three standard 
orthogonal arrays are used to model the tolerance/ process 
cost domains.  These are L27/ L27 OA, L243/ L27 OA and 
L54/ L27 OA respectively.  As the standard arrays become 
unpractical for large optimization problems, we tend to 
approximate the search space using composite arrays.  In 
this study, L27 OA (27 experiments, 3 levels and 5 
variables) is used to investigate the approximation using 5-
point, 7-point, 9-point and 11-point  composite arrays.  
Composite array is an array approximated to model more 
levels for decision variables than the existing standard 
arrays.  For instance, the standard L27OA has factors at –1, 
0, and +1 coded levels.  The 5-point array will have factors 
at –1,-0.5, 0, +0.5, and +1 coded levels.  The 7-point array 
will have factors at –1, -0.66, -0.33, 0, +0.33, +0.66 and +1.0 
coded levels.  The 9-point array will have factors at –1, -
0.75, -0.5, -0.25, 0, +0.25, +0.5, +0.75 and +1 coded  levels.  
Finally, the 11-point array will have factors at –1, -0.8, -0.6, 
-0.4, -0.2, 0, +0.2, +0.4, +0.6, +0.8, +1 coded levels.  Full 
corresponding  arrays would need 5^5, 7^5, 9^5 and 11^5 
trials for the 5, 7, 9 and 11 point composite arrays 
respectively.  Clearly, the computational effort behind these 
large numbers of experiments is huge and the use of  
composite L27OA with point approximation represents a 
tremendous computational approximation for optimization 
modeling.  Table 1 shows the standard L27OA, 4 composite 
L27 OA arrays and corresponding scaling factors. 
 
The use of L27OA to host 5-, 7-, 9- and 11-point 
approximation can be extended simply to any existing 
orthogonal arrays.  We preferred to experiment with the least 
expensive and time consuming 3-level array.  Once the 
engineering community is convinced with the validity and 
usefulness of the technique, other more detailed larger size 
arrays can be constructed.  The idea of composite arrays can 
be extended simply to higher number of levels.  Several 
illustrations are given next. 
The Standard L27 OA 
The standard L27 OA array is made up of 27 experiments, 7 
variables in 3 levels.  These variables can be assigned to 
columns 1, 2, 5, 9, 10, 12 and 13 respectively.  The 3 level 
array searches  the space between coded levels (-1.0, 0.0, 
+1.0).  For a 5-variable problem, the L27OA is equivalent to 
1/9 Full Factorial Experiments (1/9 FFE = 27/ 243).  In other 
words, 1/9 of the search space is checked at every iteration. 
5-Point and Higher Composite L27 OA 
The 5-point array  attempts to vary the same number of 
variables using 5 points with different weights.  The 5-point 
3

coded levels are (-1.0,-0.5,0.0,+0.5,+1.0).  The 5-point 
approximation is equivalent to an array with 5^5 = 3125 
experiments.  Since we use 27 experiments, this is 
equivalent to 27/3125  = 1/116.  In other words, 1/116 of the 
search space is searched at every iteration.  Similarly, the 
use of 7-,9- and 11-point is equivalent to 7^5, 9^5 and 11^5 
experiments respectively.  Similarly, 27/16,807, 27/59,049 
and 27/161,051 of the search space is checked respectively. 
The full composite arrays are given in appendix 1. 
DISCUSSION 
Table 2 gives the cost tolerance function coefficients for the 
example used for simulation (Zhang and Wang, 1993).  The 
same work can be extended to non-linear cost functions and 
constraints.  Figure 1 shows  the system variance level for 7 
arrays (3 standard arrays, these are L54/L27 OA, L27/L27 
OA and L243/L27 OA) and  (4 composite arrays, these are 
5-point, 7-point, 9-point and 11-point composite L27OA as 
mentioned earlier).  The expected process cost is determined 
for the 7 arrays as shown in  Figure 2.  Based on simulation 
results, the following conclusions can be stated: 

1. The least expected cost is $21.167, achieved using 
L243/L27 OA followed by 9-point and 7-point 
composite L27OA respectively. 

2. The highest expected cost is $23.64, achieved by 
the standard L27OA followed by L54OA. 

3. The 4-composite L27OA arrays returned the least 
cost compared with the standard L27OA but in 
larger number of iterations.  This is in line with 
high order approximations. 

4. The least variance is returned by the 7-point and 9-
point composite L27OA; although the number of 
experiments for 5-point L27 OA is 50% that of 
L54OA. 

5. The variance of the 5-point L27OA is comparable 
to that of L54OA and standard L27OA 
respectively. 

6. The variance of the 11-point composite array is 
comparable with the L243OA. 

Figure 3 shows the cost tolerance functions for dimension 1 
using process 1, 2 and 3 respectively (here denoted by P1, 
P2 and P3).  The sensitivity function is also plotted versus 
the tolerance values for different processes.  Figure 4 gives 
the sensitivity function versus iteration number for 5 arrays  
(here, the L27OA standard array is included with the 4 
composite arrays for comparison purposes).  The figure 
shows 2 regions:  the high sensitivity region and low 
sensitivity region.  In the first region, any change in 
tolerance values causes the sensitivity function to fluctuate.  
As the number of iterations increase, the function converges 
towards zero.  The least sensitive function is also 
accompanied by lower variances.  Out of the 4 composite 
arrays, the 11 point composite L27OA has the lowest 
starting sensitivity value and converged to a solution in 6 
iterations (6 x 27 experiments).  The lowest sensitivity value 
is achieved by the standard  L27OA in 7 iterations (7 x 27 
experiments).  Table 3 gives the least sensitivity solutions 
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for different arrays.  It should be noted that this is not  the 
optimum least cost solution but rather the optimum least 
sensitive solutions.  The least sensitive cost is $22.756 using 
7-point L27OA, achieved in 3 iterations compared to 
$22.831 using the standard L27OA and 8 iterations. 
The idea of standard and composite arrays is utilized to 
solve the least sensitive problem.  The least sensitive 
solution ranges from $22.756 - $23.026.  The minimum 
sensitivity solution ranges from 1438 - 1591 using the 5-
point L27 OA.  The maximum sensitivity solution ranged 
from 11,698 for 11-point L27OA to 24,996 using the 7-point 
L27 OA.  The number of iterations is generally low. 
The least sensitive solution presented here is new for several 
reasons: a) the objective function is discrete (in a certain 
domain) due to the existence of several cost functions per 
dimension; b) the objective function is a multi-objective for 
the resulting mechanical assembly. The number of 
combinations to evaluate by other algorithms such as 
Branch& Bound, Exhaustive Search, Univariate Search, 
Sequential Programming and lately Simulated Annealing 
and Genetic Algorithms is simply huge.  That's why the least 
sensitivity approach for this multi-objective combinatorial 
problem is considered a new advancement to previous 
formulations.  The effect of algorithm parameters is 
investigated next.  
EFFECT OF ALGORITHM PARAMETERS 
1. Effect of  Space Reduction Factor 
Figure  5 shows the effect of the space reduction factor  on 
the system variance level.  This factor usually varies from 
0.0-1.0.  We studied that factor in the range 0.90-0.995.  The 
performance of the algorithm shows that the maximum 
variance occurs near R > 0.9, although it converges in a non-
smooth way.  The least variance is achieved at R=0.95. 
2. Effect of Starting Search Points 
Figure 6 gives the system variance level versus the system 
level iterations for 4 starting search points and R=0.98.  
When a point (.0005,.0045, 0.0085) is used, no feasible 
solution was obtained with the maximum variance during 
the initial run. 
3. Effect of  Search Domains 
When the  search is forced to operate in a certain region, 
different mean to variance ratios are obtained.  This study is 
carried versus (-1.0,0.0,+1.0) coded level search as a 
reference for comparison.  Three different coded search are 
used, these are (-0.25,+0.25), (-0.35,+0.35) and (0.45,+0.45).  
The three designs exhibited a constant mean to variance ratio 
later during the search.  At iteration 10,  the mean to 
variance ratio is higher for (-0.25,+0.25) than for (-
0.45,+0.45), although convergence to a better variance value 
was not possible.  This comparison was done using a Delta = 
0.00075, R=0.98 and the variables assigned to column 
number 1-2-5-9-10 respectively.  Figure 7 shows the mean 
to variance ratio for non-equi-spaced search domain. 
4. The Hatch-Spaced Search 
When a search is done with the coded level (-1.0,0.0,+1.0), 
this is called a complete equi-spaced search (CESS).  We 
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tried to investigate the possibility of trimming the space with 
the attempt to guide the search in certain regions.  The 
resulting space is called Hatch-Space Search (HSS).  When a 
coded level (-1.0,0.0,+1.0) is used,  the program takes 11 
iterations to converge to higher mean to variance ratio levels 
than  (-0.5,0,+1.0), (-0.25,0,+1.0) and (-0.75,0,+1.0) hatch 
spaces respectively.  The highest mean to variance ratio was 
achieved for (-0.25,0.0,+1.0). 
When the hatching takes place from the positive side,.(-1.0, 
0.0, +0.5), we call this positive hatch space.  Similarly, when 
hatching takes place from the negative side, (-0.5, 0.0, +1.0), 
we call this negative hatch space.  This same idea was 
explored for three hatch spaces, namely (-1.0, 0.0, +0.5),(-
1.0, 0.0, +0.25) and  (-1.0, 0.0, +0.75) respectively.  The 
system mean to variance ratio exhibited a flat pattern as 
number of iterations increase. The highest variance occurred 
a t  (-1.0,0.0,+0.75).  When (-1.0, 0.0, +0.25) was used, the 
system did not converge.  Figures 8 and 9 show the system 
mean to variance ratio versus system iteration for positive 
and negative hatch space.  In both cases, the {-1.0,0.0,+1.0} 
was used as a reference. 
5. Effect of Delta 
The system mean to variance ratios are studied for 6 Delta 
values in the range 0.0004 - 0.0010.  It is found that as Delta 
reaches 0.001, the system could  not converge.  This is true 
for Delta = 0.0009 and Delta = 0.001.  The lowest variance 
was achieved for Delta = 0.0006.  When this value is 
reduced to 0.0005 or to 0.0004, the system  could not 
converge and the lowest variance value was taken as 
intermediate solution.  These conclusions were based on a 
study using 9-point composite L27 OA.  Figure 10 gives the 
system mean to variance ratios versus system level iteration 
for different  Delta  values.    
CONCLUSION 
In this paper, a new statistical optimization algorithm given 
in a previous paper (Gadallah, M.H. 2001) is herein 
extended and studied in details.  As it stands, although 
positive promising results are obtained, the algorithm needs 
further validation and experimentation versus more complex 
problems.  Few conclusions can be stated: 
1. The composite arrays, though highly fractional with 

respect to the number of design levels are more efficient 
than standard designs.  This is true for the 3 standard 
designs studied. 

2. The composite arrays, given in this study show 
consistent high and low sensitivity regions.  Most 
studies attempted to analytically derive and minimize 
the first derivative of the objective functions. 

3. The use of the tolerance allocation with process 
selection as an example for simulation does not limit the 
algorithm as a general statistical based optimization 
technique. 

4. The extension of the algorithm to more search domains 
is thought to affect the variance limits, regardless of the 
design used.  This claim needs further experimentation. 
Copyright 2001 by ASME 



5. It is true that the algorithm developed is highly data 
intensive; however, the computational and analysis 
savings are tremendous. 

6. The least sensitive formulation has not been dealt with 
in the local/ global optimization context.  In this paper, 
various solutions are given for different structures. 
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Appendix 1 
Sample 5-Point Approximation Using L27 OA  

 X1 X2 X3 X4 X5 
1 -1 -1 +1 
2 -0.5 0 -1 
3 

-1 

0 +1 -1 
4 +0.5 +0.5 +0.5 
5 

-1 

+1.0 -0.5 0 
6 

0.0 

-1 0 -0.5 
7 -0.5 0 -0.5 
8 0 +0.5 0 
9 

+1 

+0.5 -0.5 +0.5 
10 

-0.5 

+1.0 0 -1 
11 -1 +0.5 0 
12 

-0.5 

-0.5 -0.5 +1 
13 0 -0.5 0 
14 +0.5 0 +1 
15 

0 

+1.0 +0.5 -1 
16 -1 +0.5 0 
17 

0.0 

-0.5 -0.5 -0.5 
18 

+0.5 

0 0 +0.5 
19 +0.5 +1.0 +0.5 
20 

-1.0 
+1.0 -1.0 -0.5 

21 -1 0 -1 
22 

+0.50 

-0.5 
-0.5 +1.0 0 

23 0.0 0 +1.0 -1 
24 +0.5 -1.0 +0.5 
25 

+0.5 
+1.0 -1.0 0 

26 0.0 -1.0 -1 
27 

+1.0 

+1.0 
0.0 +1.0 +1 

 
Sample 7-Point Approximation Using L27 OA  
 

 X1 X2 X3 X4 X5 
1 -1 -1 -1 -1 
2 -0.66 0 0 0 
3 -0.33 +1 +1 +1 
4 

-1 

0.0 -0.66 +0.66 +0.66 
5 +0.33 0 -0.66 -0.66 
6 +0.66 +0.66 0 0 
7 +1 -0.33 0 0 
8 

-0.66 

0 0 +0.33 +0.33 
9 0 +0.33 -0.33 -0.33 

10 -1 -1 0 +1 
11 -0.66 0 +1 -1 
12 

-0.330 

-0.33 +1 -1 0 
13 0 -0.66 -0.66 0 
14 +0.33 0 0 +0.66 
15 

0.0 

+0.66 +0.66 +0.66 -0.66 
16 +1 -0.33 +0.33 -0.33 
17 0 0 -0.33 0 
18 0 +0.33 0 +0.33 
19 

+0.33 

-1 -1 +1 0 
20 -0.66 0 -1 +1 
21 -0.33 +1 0 -1 
22 0 -0.66 0 -0.66 
23 

+0.66 

+0.33 0 +0.66 0 
24 +0.66 +0.66 -0.66 +0.66 
25 +1 -0.33 -0.33 +0.33 
26 0 0 0 -0.33 
27 

+1.0 

0 +0.33 +0.33 0 
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Sample 9-Point Approximation Using L27 OA  
 X1 X2 X3 X4 X5 

1 -1 -1 -1 
2 -0.75 +0.75 0 
3 

-1 -1 

-0.5 +1 +1 
4 -0.25 +0.75 +0.75 
5 0 -0.75 -0.75 
6 

+0.75 
 

+0.75 

+0.25 +0.75 -0.25 
7 +0.5 0 +0.25 
8 +0.75 +0.5 +0.5 
9 

+0.50 
 

+0.50 

+1 -0.5 -0.5 
10 -1 -0.75 +0.25 
11 -0.75 +1 -0.25 
12 

-0.25 -0.25 

-0.50 -1 0 
13 -0.25 -0.5 -1 
14 0 -0.25 +0.25 
15 

0.0 0.0 

+0.25 +0.5 -0.25 
16 +0.50 +0.25 -0.50 
17 +0.75 -0.25 +1 
18 

+0.25 -0.25 

+1 0 +0.5 
19 -1 +0.5 +1 
20 -0.75 -0.5 +0.75 
21 

+0.50 
 

+0.50 

-0.50 +0.25 -0.75 
22 -0.25 0 -0.5 
23 0 +0.25 0 
24 

+0.75 
 

+0.75 

+0.25 -0.25 +0.5 
25 +0.50 -1 +0.75 
26 +0.75 -0.75 -0.75 
27 

+1.0 +1 

+1 +1 -1 

 
 
Sample 11-Point Approximation Using L27 OA  
 

 X1 X2 X3 X4 X5 
1 -1 -1 -0.8 -1 -1 
2 -0.8 -0.6 +0.8 0 
3 -0.6 -0.4 +0.6 +1 
4 

-0.8 

+0.6 -0.4 +0.8 +0.8 
5 +0.4 -0.2 -0.6 -0.8 
6 +0.2 +0.4 +0.8 -0.2 
7 

-0.6 

+0.6 +0.4 0 +0.2 
8 +0.4 +0.6 +0.4 +0.4 
9 +0.2 +0.8 -0.4 -0.4 

10 

-0.4 

-0.2 -0.4 -0.8 +0.2 
11 -0.4 -0.6 +0.4 -0.2 
12 -0.6 -0.8 -0.4 -0.4 
13 

-0.2 

0 -0.2 -0.6 -0.8 
14 0.0 -0.6 0 -0.2 +0.2 
15 -0.8 +0.2 +0.6 -0.2 
16 +0.2 +0.6 +0.2 -0.6 
17 

+0.2 

+0.4 +0.8 -0.2 +0.6 
18 +0.6 +1 -0.8 +0.4 
19 -0.2 -1 +0.4 +0.4 
20 

+0.4 

-0.4 -0.8 -0.4 +0.8 
21 -0.6 -0.6 +0.2 -0.8 
22 -0.2 -0.2 -0.8 -0.6 
23 

+0.6 

-0.4 +0.2 +0.2 +0.6 
24 +0.8 +0.2 -0.2 +0.6 
25 +0.8 +0.4 -0.6 +0.8 
26 

+0.8 

+0.8 +0.6 -0.6 -0.6 
27 +1 +1 +0.8 +1 -0.4 
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 0 +0.2 +0.25 +0.33 +0.40 +0.50 +0.60 +0.66 +0.75 +0.80 +1.0 
Standard 
L27OA 

v          v 

Composite 5-
point L27OA 

v     v     v 

Composite 7-
point L27OA 

v   v    v   v 

Composite 9-
point L27OA 

v  v   v   v  v 

Composite 11-
point L27OA 

v v   v  v   v v 

 
 - 1  

 
-0.8 -0.75 -0.66 -0.6 -0.5 -0.40 -0.33 -0.25 -0.2 

Standard 
L27OA 

v          

Composite 5-
point L27OA 

v     v     

Composite 7-
point L27OA 

v   v    v   

Composite 9-
point L27OA 

v  v   v   v  

Composite 11-
point L27OA 

v v   v  v   v 

 
Table 1:  Standard L27OA and Five  Composite L27OA and Corresponding Scaling Factors 
 

 
Variable 
 

Process 1 Process 2 Process 3 

 A B A B A B 

1 3.0 0.012 2.0 0.016 -1.20 0.029 
2 
 

-0.33 9.3E-3 -8.0 0.042 -2.0 0.012 
 

3 3.0 0.003 2.0 0.008 - - 

4 4.0 0.008 3.0 0.012 - - 

5 6.0 0.004 5.0 0.010 -4.70 0.047 

Table 2:  Cost – Tolerance  Function  Coefficients   (ZHANG, C. and WANG, H.P.). 
 

Index O -T L-S-O-F C-V O - P- C Comment Maximum 
Solution 

Minimum 
Solution 

Number 
of 
Iterations 

1 0.0055, 0.0061, 
0.0049, 0.0049, 
0.0033 

$ 22.831 0.0139 
0.0249 

{1, 1, 1, 1, 1} Standard 
L27 OA 

14, 828 1438 7 

2 
 
 

0.0058,0.0057, 
0.0025, 0.0047, 
0.0053 

$ 23.026 0.0137 
0.0242 

{1, 1, 1, 1, 1} 5-Point 
L27 OA 

14,184 1591 8 

3 0.0065, 0.0053, 
0.0043, 0.0055, 
0.0030 

$ 22.756 0.0139 
0.0248 

{1, 1, 1, 1, 1} 7-Point 
L27 OA 

24, 996 1466 3 

4 0.0057, 0.0051, 
0.0045, 0.0049, 
0.0036 

$ 23.007 0.0139 
0.0241 

{1, 1, 1, 1, 1} 9-Point 
L27 OA 

12, 038 1477 8 

5 0.0057, 0.0067, 
0.0037, 0.0044, 
0.0035 

$ 22.934 0.0130 
0.0242 

{1, 1, 1, 1, 1} 11-Point 
L27 OA 

11, 698 1504 6 

N-o-I = Number of Iterations, C-V = Constraint Value, L-S-O-F = Least Sensitive Objective Function,  
O-T = Optimum Tolerance, O-P-C = Optimum Process Combination 
Table   3:  Sensitivity Solutions   for Example Problem    
Copyright 2001 by ASME 7



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:  System Variance Level for Different Standard & Composite Designs 

Figure 2:  System Expected Process Cost for Different Standard & Composite Designs 
 

 
Figure 3:  Cost Tolerance Functions and Corresponding Sensitivity Function 
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Figure 4:  The sensitivity Diagram for Standard & Composite Designs 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5:  Variance Level versus Reduction Factors 
 
 
 

 
 
 
 
 
 
 

Figure 6: Variance Level for Different Starting Search Points 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Mean/ Variance ratio for Equi-Spaced Space 
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Figure 8: Mean/ Variance ratio for Non-Equi-Spaced Negative Hatch Space 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Mean/ Variance ratio for Non-Equi-Spaced Positive Hatch Space 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Mean/ Variance ratio for Different Delta Values 
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