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ABSTRACT 
 
The initial and crucial step in developing an accurate end milling model using artificial 
neural network (ANN) requires an enormous number of experiments over several ranges of 
feasible input parameters. However, approximately, similar modeling results can be 
achieved with lower number of experiments and consequently lower experimental cost, 
when the selection of experiments is properly planned. This paper provides a powerful 
methodology for selecting efficient experiments using orthogonal arrays (OAs) and design 
of experiments (DOE). Process variables include depth of cut (a), spindle speed (n), feed 
rate (f), and tool diameter (d). The interest is to measure the resulting dynamic cutting forces 
in the time domain. An ANOVA study for an initial experimental model based on 3-levels 
OA is presented and discussed.  Consequently, several experimental models are selected 
including 2-levels, 3-levels, 4-levels, and 5-levels OAs aiming to provide larger 
experimental model that host more variations for significant parameters. A number of 
preliminary experiments is conducted to validate the used experimental setup. Previous 
work in the field of metal cutting using analytical and numerical modeling as well as  
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artificial intelligence techniques are reviewed and discussed.  Results indicate the validity of 
neural based models for end milling process modeling. 
 
 
KEYWORDS: Artificial Neural Networks, DOE, Orthogonal Arrays and Modeling. 
 
 
1. INTRODUCTION 
 
Developing a precise model that can predict the performance of metal cutting system and 
consequently, lessen the requirements of carrying out experiments is one of the most 
important topics that received a tremendous attention from both academic researchers and 
industry practitioners. Satisfactorily achieving that task is very difficult because the features 
of metal cutting system are complex and contain many interacting factors. In particular, 
modeling the process of milling is more complicated because the dynamics are more 
difficult and the resulting cutting forces are periodic [19]. Therefore, recently, there has been 
a strong need for utilizing powerful modeling tools. One of these modeling tools is artificial 
neural network (ANN). It can accurately model complex systems like milling system after 
using some experiments for training phase and other experiments for validation purposes. 
Nevertheless, neural modeling is an expensive modeling technique that needs several 
hundred milling experiments over several ranges of feasible input parameters.  The purpose 
of this article is to provide a powerful methodology using the orthogonal arrays and design 
of experiments for selecting efficient end milling experiments that can be used for 
constructing a neural model with low experimental cost for end milling process.  
 
 
2.  BACKGROUND 
  
2.1 Milling Process 
In the milling operation, tools with multiple cutting edges are rotated and fed towards the 
machined part to form the desired shape by removing the unwanted material. Milling is a 
very flexible process capable of producing simple two-dimensional flat shapes to complex 
three-dimensional surface. Milling has several geometries which can be categorized into two 
main groups: face milling (or end milling) and peripheral milling (or slab milling).  

 
Milling can be viewed as an intricate system with several input and output parameters.  Such 
system can be divided into four elements. They are: input parameters, a milling machine, 
internal parameters, and output parameters. The system has several input machining 
parameters to be considered and planned before machining to get desirable output 
parameters. Tool material and geometry, depth of cut, spindle speed, feed rate, and cooling 
fluids are some significant examples of these decision variables. The optimum value of one 
input variable for one cutting situation can be undesirable in other situations. For instance, 
cooling fluids, in many milling applications, have vital benefits such as reducing the cutting 
temperature and lubricating the tool and the work-piece. In other applications, however,  
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using cooling fluids will not be necessary, and in some cases will not be recommended to 
avoid the thermal shock that can result from sudden cooling. Besides, searching for the most 
suitable values of input parameters has to consider the values of other parameters. For 
example choosing a cutting tool for a particular milling operation will depend on many other 
factors such as the feature to be machined and the work-piece material to be cut. Moreover, 
input parameters can rely on the type and condition of the machine that will be used. The 
type of machine will place a limit on the input parameters and their assigned values. 
However, knowing the actual performance of the machine condition usually requires deep 
experience along some estimation of the planners for determining the most suitable input 
process values.  

 
Cutting forces, machine vibrations and quality of parts are important issues that should be 
studied. These internal parameters have strong relation with the milling system’s output 
parameters such as quality of parts. As the stability of internal parameters is obtained, the 
throughput parameters can be improved. Moreover, instability of these internal parameters 
can badly affect the machine condition, and lead to additional loss. Therefore, measuring 
these parameters helps in process monitoring and enhances quality of machined parts. 

 
Contact between cutting tool and machining parts generates significant and irregular forces 
during the cutting pass. Industry practitioners and researchers tend to control these forces to 
have constant average force as possible.  Excessive forces can lead to some unwanted 
machining performance such as tool failure, tool deflections, geometric work-piece errors, 
poor surface finish, and machine structure deflections. Cutting forces have strong influence 
on tool breakage, tool wear, and work-piece deflection.  

  
2.2 Design of Experiments 
An essential objective of a designer of a product or a process is to get a reasonable 
conclusion about the effect of design parameters on response variables under different 
conditions. DOE allows for a systematic approach to quantify the effects of these parameters 
using a technique called the analysis of variance (ANOVA). 

 
2.3 Artificial Neural Network 
ANN is an information handling means that is inspired by the way biological nervous 
systems deal with information. ANN is basically composed of processing elements 
connected in parallel called neurons [7, 21]. Every connection contains an adjustable 
parameter called weight. The output of ANN comes from combination of each single 
neuron’s output by these connections. ANN has several types and applications such as self-
organizing (unsupervised) ANN that can be used for classification problems, and the 
supervised ANN that can be used for nonlinear multivariate function mapping. Since this 
work uses the supervised ANN for process modeling, a description will be presented. The 
supervised ANN can be trained to acquire knowledge by presenting some different input 
values of sophisticated nonlinear function.  For training pattern, ANN adjusts its weight 
parameters based on the magnitude of the error between the true output and the ANN output. 
The role of the ANN algorithms is to minimize the error function with every new training  
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pattern until the error is gradually reduced to become acceptably small. At this time, the 
ANN can be used to predict new output values for any input values as shown in Figure 1. 
 
 
3. LITERATURE REVIEW 

  
The discussion of several modeling processes of metal cutting is presented in two categories: 
analytical and numerical modeling and modeling using artificial intelligence.  
 
3.1 Analytical and Numerical Modeling 
By definition, analytical modeling is a set of equations based on physical significance 
describing the performance of the metal cutting system. These equations are usually easy to 
implement and can give excellent understanding of metal cutting physics. However, such 
models have some assumptions. Cutting process is assumed to be orthogonal and the 
material is removed by a cutting edge that is perpendicular to the direction of relative tool-
part motion. Using such simplification, the cutting force is uniform along the cutting edge, 
the resulting chip is uniform flat, and the resulting stress and shear distributions are uniform. 
Furthermore, dynamic features such as machine vibrations, the spindle run-out and the 
thermal effect are neglected. 

 
Since the developed equations contain a number of coefficients, it is not applicable to use 
the analytical model alone. It is more sensible to carry out few experiments used to identify 
these coefficients. Then, these coefficients can be used to model the processes within the 
range of conducted experiments. In this case, the model will be called mechanistic model.  
For example, a handbook containing several cutting coefficients for many alloys was 
presented by Cincinnati [5]. This approach was used to predict the cutting force, torque and 
power in a simple and fast way for a set of process variables such as depth of cut, spindle 
speed, tool geometry, feed rate and work-piece material. However, the mechanistic model 
has some limitations. First, the model can't predict out of range responses which leads to 
more needed experiments. Second, it is time consuming to search for appropriate tables to 
choose suitable coefficients. Third, the ignorance of many dynamic features of the cutting 
process and the simplification applied to the cutting configuration and the developed models 
are still remote from being considerably complete. Accordingly, there has been a great effort 
to lessen the disadvantages of this approach and to enhance the cutting analysis.  

 
Among those efforts, a simulation based model for predicting cutting forces of end-milling 
was presented by Milfelner and Balic in [13].  Abrari and Elbastawi [1] presented a set of 
force functions that implement an analytical integration of cutting forces along the cutter 
edge rather than using numerical integration. The developed functions are based on the 
projection ship of the load area in any tool pass onto the reference coordinate planes. These 
equations were applied separately to some milling operations of flat and ball end mills and 
the obtained results were compared to the experimental data. Results showed good 
agreement between model and experimentation. 
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A dynamic model of turning process was presented by Acosta, Switek, and Garcia [3]. The 
model was implemented by developing software to output the machining parameters. Some 
experiments were performed and showed that the model is capable of illustrating many 
machining parameters within certain ranges and with some deviations due to ignorance of 
some dynamic features such as vibration.   

 
Li et al [12] presented a theoretical model for face milling based on predictive machining 
theory and the mechanics of milling. A windows based simulation system was presented 
with friendly user-interface. The model outputs milling force variation against cutter rotation 
in either numerical or graphical form.  Oxley's predictive machining theory [16] is used as a 
foundation in which the cutting forces are calculated from input data of work-piece 
properties, tool geometry, cutting conditions, and the type of milling. A number of 
experiments was performed to validate and test the model. Results confirmed good 
prediction accuracy with error range of 1% ~ 12%. 

 
Orthogonal cutting considering the dynamics of cutting forces was studied by Abrari et 
al.[2]. This method considers the tool as very thin slices and the cutting force as the 
summation of cutting forces applied to each slice. The model considers the effects of surface 
undulations, instantaneous deflection and the interface of flank face with the finished 
surface. The paper also considers the semi-finishing operation of die cavities.  

 
Another way for reducing the limitation of analytical models is by simulating the process 
using the finite element methods (FEM).  The experiments conducted on a horizontal high 
speed milling center were used to compare the resulting values with the predicted ones. The 
comparison demonstrated the effectiveness of FEM simulations in predicting process 
variables in simple flat end milling. 

 
3.2 Modeling Using Artificial Intelligence  
Artificial Intelligence Techniques (AIT) have been used to efficiently predict many dynamic 
features both on and offline.  Surface roughness and tool flank wear have been predicted 
using back-propagation neural network models (Ozel, and Karpat [15]).  A regression model 
was developed and compared with the neural network model. Superior results were noticed 
by the model.  A similar approach was taken by Chien and Tsai [4].  Optimization model 
was then formulated to maximize metal rate.  

 
A new approach using neural network for modeling flat end milling operation was presented 
by El-Mounayri et al. [6]. Feed rate, spindle speed, and radial depth of cut were used as 
input parameters to give a representation of the cutting forces. The full factorial design 
techniques were used to plan the experiments needed for training the neural network. This 
includes using four OAs specifically, L9 OA, L27 OA, L27 OA (extended range), and L36 
OA. Comparison between these arrays for training the neural model was specified. Results 
indicated that L36 OA model results in better predictive model.  

 
Online predictive model for surface roughness in turning operations was presented by Ho 
Shinn-Ying et al [8] using an adaptive NEURO-FUZZY inference system (ANFIS) and  
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computer vision. The model aims to precisely predict the features of surface roughness for 
certain cutting parameters. Experimental results demonstrated better modeling and 
prediction accuracy than previous models. 

 
Literature indicated efforts directed to advance the mathematical models based on the 
physics and the geometry of metal cutting. This included the effect of some dynamic 
features and more comprehensive analysis for metal cutting process.  Implementation of 
these models have received attention including faster techniques for equation solving 
computer software that enhances model manipulation. This approach has relatively added 
more accuracy and has made the mathematical model easier to use. However, it is relatively 
complex to obtain accurate models that totally consider the dynamic nature of metal cutting.  

 
 

4.  METHODOLOGY 
 
End milling is selected as the cutting process specifically, slot end milling process with one 
path. Depth of cut (a), spindle speed (n), feed rate (f), and tool diameter (d) are chosen as the 
process variables. These four variables are assumed to be independent variables. Other 
process variables are chosen at fixed levels for all experiments. The resulting dynamic 3-D 
cutting forces will be measured as the output response. The three resulting force components 
FX, FY, and FZ are combined to one resultant force using the following equation. 

 
   F = √ [(FX) 2 + (FY) 2 + (FZ) 2]     1 
 

Figure 2 illustrates the resultant force of three cutting revolutions as a sample. In this 
illustration, it is clear that the resultant cutting force is periodic. However, the cutting force 
behavior of each revolution is not identical. For example, the maximum force and minimum 
force are different for each revolution. The reasons for this behavior are due to the noise in 
the measurement, machine vibrations, and the irregularities of work-piece material. It is also 
shown that within a revolution the two maximum peaks and two minimum peaks are not 
similar because of spindle run-out. Therefore, using the resultant force, the outputs are 
presented in the form of six values. The first four values are: the maximum, the minimum, 
the mean, and the standard deviation of resultant force: FMax, FMin, FMean, and FStdev.  FM-Max 
and FM-Min are the symbols of the mean of maximum and minimum force respectively. The 
resultant cutting force values are determined only at the cutting time while the force values 
before and after cutting time are not considered in the calculation. The uncut force variations 
represent the machine vibration and other noise variations. Trying to reduce the effect of 
noise variations, the mean of uncut force variations was calculated and subtracted from the 
cut force variations as illustrated in Figure 3. 

 
Using fractional factorial designs (FFD), a number of Orthogonal Arrays (OAs) are 
presented considering 2 ~ 5 levels to cover the chosen space of the given input variables. At 
the beginning, an experimental model of 3-levels called UL27-1 is carried out and an 
ANOVA study is presented for this model. Other 4 experimental models called UL8-1, UL9, 
UL32, and UL25 considering 2, 4, and 5 levels for each variable parameter. Additional  
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models are presented called UL8-2, and UL27-2 using two and three variable levels. 
Besides, a set of 21 experiments covering different input values was performed. This model 
has some input values within the selected range and other points outside the range. The role 
is to provide validation within and outside the range.  

  
All experimental models are conducted using the CU machine while another two models 
called NL8-1 and NL8-2 utilizing two variable values, are conducted using the CNC 
machine. Another set of 17 experiments are chosen to have different input positions in the 
space are conducted on the CNC machine called N-ad and used for the validation process 
later.  None of the ANOVA results are given in table form due to limitations of space. 
 
 
5. EXPERIMENTAL SETUP & VALIDATION 

 
The employed equipment and setup consist basically of six main elements: two milling 
machines, work-pieces, tools, a dynamometer, a data acquisition system, and a pc. This 
section will identify and describe these elements briefly. 

 
All experiments are conducted using two milling machines. They are CNC milling machine 
and conventional universal milling machine (CU). The CNC machine can run at spindle 
speeds from 100 rpm to 2500 rpm. Its axis travels 290 mm in X-direction, 170 mm in Y-
direction, and 235 mm in Z-direction. While the conventional machine has some limitations 
regarding the alternative values of both spindle speed and feed rate.  

 
Cast aluminum work-pieces used are purchased from the local market. Their dimensions are 
chosen to be 80 x 65 x 60 mm to suit the fixing area of the dynamometer. Surfaces of work-
pieces are prepared before milling to avoid any surface irregularities with  two holes for 
clamping purposes.  

 
Six IZAR® HSS 2-flute end-mill tools [11] with different diameter sizes were used. They 
are 6 mm, 7 mm, 8 mm, 10 mm, 11 mm, and 12 mm. All tools have the same cutting angles 
and material.  

 
Three Cartesian force components are measured by a KISTLER 9257B dynamometer. A 
work-piece can be fixed in its top late area of 170 x 100 mm. The dynamometer starts the 
process of measurements the cutting forces by sending analog signals in the form of voltages 
proportional to the actual cutting forces occurring to three amplifiers by an integrated cable.  

 
A HUMSOFT MF 614 data acquisition card is used with a pc to interpret these signals. The 
used card has some important features. It contains a converter unit that receives analog 
signals and converts them to digital signals. Therefore, it used to receive the analog signals 
from the amplifiers and output digital signals. Besides, this card can work with a Real Time 
Toolbox for MATLAB that contains a library of real-time blocks. This enables to create a 
simulation diagram using SIMULINK and consequently, benefits from SIMULINK 
capabilities. Therefore, SIMULINK simulation diagram is designed using some real-time  
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blocks provided in the Real Time Toolbox [3] and MATLAB to understand the coming 
digital signals and give online diagrams, immediately processing the data and store the data 
in mat-file format. It also gives the ability to specify different sampling periods for each 
output. The cutting forces were sampled at 500 HZ for 1 second. Figure 4 and 5 show the 
simulation model used for force measurements and the experimental setup. 

 
A number of initial experiments was performed and repeated on the two milling machines.  
The repeatability errors were calculated for the six output values: FMax, FMin, FMean, FStdev, 
FM-Max, and FM-Min, using equation 2. 

 

    
1

)21(
V

VVabsRE −
=   2 

Where, RE is the repeatability error. V1 is the measured force value of the first experimental 
run and V2 is the measured force value of the repeated experimental run. The repeatability 
error measures the possibility of each machine to respond the identical performance when 
using the same input machining parameters.  Table 1 gives the control variables used for all 
experimental models.  Table 2 and 3 show that the mean repeatability error is 5.95% for 
CNC machine and is 8.26% for CU. Resultant errors from FMin and FM-Min are too high and 
once excluded the mean repeatability error for CNC and CU become 2.29% and 3.51% 
respectively. Accordingly, the two machines can be acceptable for the FMax, FMean, FStdev, and 
FM-Max values, while they are not trustworthy for FMin and FM-Min values. One possible reason 
for the increase of repeatability error for FMin and FM-Min is that their values are very small 
and consequently will be strongly affected by the noise variations resulting from machine 
noise, vibrations and force measuring equipment. 

 
 
6. RESULTS & CONCLUSIONS 
 
An ANOVA study (at a confidence level of 90%) using UL7-1 to determine the significance 
of input process variables was conducted. Fmax and FM-Max, FStdev, FMin and FM-Min, FMean   are 
taken as output responses.  Results indicate that the four input parameters are significant at 
90% confidence.  This also strengthens our initial choice to model end milling process.  
Furthermore, the modeling capability of UL27-1 can be enhanced by adding experiments 
that have more [a] and [f] levels. Consequently, other experimental models are selected to 
contain more [a] and [f] levels including 2-levels, 3-levels, 4-levels, and 5-levels OAs. 
Combining these experimental models into a larger model is expected to provide better 
modeling capabilities. Besides, the modeling capability of each model when used as training 
patterns for the neural model can be studied and compared.  A sample force measurement 
was given in Table 4 using L8OA and a sample space representation of CU and different 
tool diameters is given in Figure 6.  A neural network model was developed for flat end 
milling process.  DOE and ANOVA were used to fractionate the huge number of 
experiments needed for model development.  In a sequel paper, we intend to present our 
final Neural network Model of flat end milling process. 
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Table 1.   Control Variables Used for All Experimental Models. 

a mm n rpm f mm/min d mm 
CU CNN CU CNN CU CNN CU CNN 
0.5 0.5 400 500 35.5 50 6 6 
0.75 1 560 750 50 100 7 8 
0.8 1.5 800 1000 71 150 8 10 
1 2.5 1120 1500 100 200 10 12 

1.25  1600  140  11  
1.5    200  12  
1.8    280    

 
 

 
 

Figure 1.  A Block diagram representation of training process [20]. 
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Figure 2.  Force vs. Time for Three Revolutions. 

 
Figure 3.  Force Variations vs. Time. 
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Figure 4.  SIMULINK Simulation Model Used to Measure the Cutting Forces. 

 

Figure 5.  The Experimental Setup. 
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Table 2.  Repeatability Testing Experiments for the CNC machine. 

a mm n rpm f mm/min d mm FMax FMin FMean FStdev FM-Max FM-Min

126.328 0.211 35.888 31.478 95.496 1.607 1.5 1000 50 10 125.893 0.248 36.539 31.579 95.562 1.694 
The Repeatability Error % 0.34% 17.42% 1.81% 0.32% 0.07% 5.39%

124.808 0.247 43.494 34.223 104.865 2.5921 750 100 8 129.444 0.297 45.604 33.207 106.357 3.355 
The Repeatability Error % 3.71% 20.31% 4.85% 2.97% 1.42% 29.43%

170.909 0.433 53.085 38.369 122.287 5.0460.5 500 200 12 173.491 0.415 54.724 39.796 126.653 5.193 
The Repeatability Error % 1.51% 4.31% 3.09% 3.72% 3.57% 2.93%
The Mean Errors = 5.95% 1.86% 14.01% 3.25% 2.34% 1.69% 12.58% 

Table 3.  Repeatability Testing Experiments for the CU machine. 

a mm  n rpm f mm/min d mm FMax FMin FMean FStdev FM-Max FM-Min

193.296 0.189 51.349 51.647 156.462 3.591 1 1600 230 12 199.995 0.174 52.057 51.948 158.120 3.449 
The Repeatability Error % 3.47% 8.04% 1.38% 0.58% 1.06% 3.93%

415.081 0.399 222.959 92.558 346.261 23.3162.5 800 230 8 442.991 0.469 228.989 96.286 353.982 21.453 
The Repeatability Error % 6.72% 17.60% 2.70% 4.03% 2.23% 7.99%

130.995 0.170 31.734 30.935 89.473 2.2560.5 560 100 10 124.052 0.264 32.986 32.166 92.486 2.201 
The Repeatability Error % 5.30% 55.48% 3.95% 3.98% 3.37% 2.44%

264.828 0.205 70.154 76.550 198.989 1.5901.5 560 100 10 255.130 0.210 69.240 74.596 194.386 1.922 
The Repeatability Error % 3.66% 2.14% 1.30% 2.55% 2.31% 20.86%

The Mean Errors = 8 26% 5 23% 25 07% 2 65% 3 52% 2 64% 10 43% 
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Table 4.   A Sample  Model - Force Components for Experimental Models. 

Model Name Value Definition FMax FMin FMean FStdev FM-Max FM-Min

Max. 367.49 0.56 138.58 108.10 292.81 4.30 
Mean 253.18 0.34 75.44 62.97 190.97 2.90 
Min. 106.04 0.11 32.37 20.77 69.18 1.79 UL8-1 

Stdev. 105.11 0.15 33.22 29.58 84.39 0.87 
 

  

  
Figure 6.  Sample space Representation of  CU and Different Tool diameters (TD). 
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