Publications

Export 6 results:
Sort by: Author Title Type [ Year  (Asc)]
2012
Chemical and biological study of Manilkara zapota (L.) Van Royen leaves (Sapotaceae) cultivated in Egypt, m Fayek, Nesrin, Monem Azza Abdel R., Mossa Mohamed Y., Meselhy Meselhy R., and Shazly Amani H. , Pharmacognosy research, Volume 4, Issue 2, p.85, (2012) Abstract
n/a
2013
New triterpenoid acyl derivatives and biological study of Manilkara zapota (L.) Van Royen fruits, m Fayek, Nesrin, Monem Azza Abdel R., Mossa Mohamed Y., and Meselhy Meselhy R. , Pharmacognosy research, Volume 5, Issue 2, p.55, (2013) Abstract
n/a
New triterpenoid acyl derivatives and biological study of Manilkara zapota (L.) Van Royen fruits., m Fayek, Nesrin, Monem Azza Abdel R., Mossa Mohamed Y., and Meselhy Meselhy R. , Pharmacognosy research, 2013 Apr, Volume 5, Issue 2, p.55-9, (2013) Abstract

β-amyrin-3-(3'-dimethyl) butyrate, a new natural compound was isolated from the fruits of Manilkara zapota (L.) Van Royen, in addition to lupeol-3-acetate and 4-caffeoylquinic acid (cryptochlorogenic acid). The structures of these compounds were identified using different spectral methods (IR, MS, UV, (1)H-NMR, (13)C-NMR and 2D-NMR). The alcoholic and aqueous extracts of the unripe fruits, in addition to their aqueous homogenate exhibited antioxidant, antihyperglycemic and hypocholesterolemic activities.

2020
Anti-inflammatory and antioxidant effects of Apium graveolens L. extracts mitigate against fatal acetaminophen-induced acute liver toxicity., Emad, Ayat M., Ali Sherifa F., Abdel-Rahman Engy A., Meselhy Meselhy R., Farag Mohamed A., Ali Sameh S., and Abdel-Sattar Essam A. , Journal of food biochemistry, p.e13399, (2020) Abstract

In the present work, antioxidant activity, total phenolics (TP), and total flavonoids (TF) contents of aqueous and methanol extracts of celery were determined, in addition to untargeted metabolites profiling its methanol celery root extract (MCRE) via UPLC-MS. Although MCRE exhibited the lowest TPC and TFC levels, it presented the most potential hydroxyl radical quenching effect using electron paramagnetic resonance spin trapping technique. Treatment of Acetaminophen-induced hepatotoxicity (AAH) rats with MCRE lowered serum levels of AST, ALT, ALP, TNF-α, and IL-1β significantly. Additionally, MCRE significantly increased total antioxidant capacity (TAC) and glutathione (GSH) levels relative to AAH rats. Strikingly, Kaplan-Meier survival analysis of all groups revealed a 100% prevention of acetaminophen-induced mortality of rats by MCRE pretreatment (100 mg/kg/day). MCRE prevented AAH-associated severe weight loss and elicited normal behavior in the rescued rats. Our results suggest that pretreatment with MCRE can mitigate against overdosed acetaminophen-induced acute liver failure and warrant further investigations on the potential of postinjury intervention. PRACTICAL APPLICATIONS: Acetaminophen-induced hepatotoxicity (AAH) accounts for alerting numbers of overdose-related acute liver failure and liver transplant cases with increased morbidity and mortality rates. Currently proposed mechanisms implicate mitochondria-mediated oxidative stress and inflammation in the pathogenesis of AAH, which underline current interventions employing antioxidants to combat liver damage by over-dosed acetaminophen. The present work uncovers potent protective effects of some celery extracts (and their fractions) against acetaminophen-induced oxidative stress and inflammation. Treatment of rats with fatal liver injury with methanol extract of celery root significantly reduced secretion of liver enzymes and markedly decreased inflammatory as well as oxidative stress markers in these animals. This, in turn, rescued challenged rats exposed to fatal doses of acetaminophen completely, which establishes methanol extracts of celery roots as effective therapeutic intervention against AAH. The antioxidant capacity of the extracts was determined using EPR technique, and the secondary metabolites related to antioxidant activity were characterized via UPLC-MS.

2021
Alkaloids Self-Assembled Supramolecular Nanocapsules with Enhanced Antioxidant and Cytotoxic Activities., Fahmy, Sherif Ashraf, Issa Marwa Y., Saleh Basma M., Meselhy Meselhy Ragab, and Azzazy Hassan Mohamed El-Said , ACS omega, Volume 6, Issue 18, p.11954-11963, (2021) Abstract

Amphiphilic macrocycles, such as -sulfonatocalix[6]arenes (-SC6), have demonstrated great potential in designing synthetic nanovesicles based on self-assembly approaches. These supramolecular nanovesicles are capable of improving the solubility, stability, and biological activity of various drugs. In the present study, the biologically active harmala alkaloid-rich fraction (HARF) was extracted from . seeds. Ultraperformance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC/ESI-MS) analysis of HARF revealed 15 alkaloids. The reversed-phase high-performance liquid chromatography (RP-HPLC) analysis revealed three peaks: peganine, harmol, and harmine. The HARF was then encapsulated in -SC6 nanocapsules employing a thin-film hydration approach. The designed nanocapsules had an average particle size of 264.8 ± 10.6 nm, and a surface charge of -30.3 ± 2.2 mV. They were able to encapsulate 89.3 ± 1.4, 74.4 ± 1.3, and 76.1 ± 1.7% of the three harmala alkaloids; harmine, harmol, and peganine; respectively. The drug release experiments showed the potential of the designed nanocapsules to release their cargo at a pH of 5.5 (typical of cancerous tissue). The IC values of HARF encapsulated in -SC6 (H/-SC6 nanocapsules) were 5 and 2.7 μg/mL against ovarian cancer cells (SKOV-3) and breast adenocarcinoma cells (MCF-7), respectively. The prepared nanocapsules were found to be biocompatible when tested on human skin fibroblasts. Additionally, the antioxidant activity of the designed nanocapsules was 5 times that of the free powder fraction; the IC of the H/-SC6 nanocapsules was 30.1 ± 1.3 μg/mL, and that of the HARF was 169.3 ± 7.2 μg/mL. In conclusion, encapsulation of alkaloid-rich fraction into self-assembled -SC6 significantly increases its antioxidant and cytotoxic activities.

UPLC-PDA-ESI/MS metabolic profiling of dill shoots bioactive fraction; evidence of its antioxidant and hepatoprotective effects in vitro and in vivo., Rasheed, Dalia M., Emad Ayat M., Ali Sherifa F., Ali Sameh S., Farag Mohamed A., Meselhy Meselhy R., and Sattar Essam A. , Journal of food biochemistry, p.e13741, (2021) Abstract

Hydroxyl radical ( OH) scavenging capacity of aqueous dill (Anethum graveolens L.) shoot (ADSh) extract was assessed using electron paramagnetic resonance (EPR) spectroscopy. ADSh extract (at concentrations of 0.5 and 10 mg/ml) exerted high (OH) radical scavenging power. ADSh extract was further fractionated on Diaion HP-20 column to yield five fractions. EPR spin-trapping assay revealed fraction 4 (eluted with 75% aq. MeOH) to possess ( OH) radical scavenging capacity over a concentration range (0.01-10 mg/ml), whereas fraction 2 (eluted with 25% aq. MeOH) appeared to be pro-oxidant at concentration 0.01 mg/ml. UPLC-PDA-ESI-MS metabolite profiling of ADSh extract revealed 87 metabolites, of which 64 compounds were identified in fraction 4, the most active fraction. Furthermore, ADSh extract demonstrated a hepatoprotective effect against acetaminophen (APAP)-induced hepatotoxicity in rats. Pretreatment of rats with ADSh extract (200 mg/kg b.wt) markedly attenuated the increased in the serum hepatic enzyme levels. It also increased free glutathione level and total antioxidant capacity in the serum of treated rats. [Correction added on May 3, 2021, after first online publication: "rates" has been changed to "rats" in the previous sentence.] Additionally, levels of (TNF-α and IL-1β) were back to almost normal levels compared to the control group. The above findings suggest that ADSh extract has a protective effect against APAP-induced liver damage.