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Let n > 2. A weakly representable relation algebra that is not strongly representable is constructed. It is proved
that the set of all n by n basic matrices forms a cylindric basis that is also a weakly but not a strongly repre-
sentable atom structure. This gives an example of a binary generated atomic representable cylindric algebra
with no complete representation. An application to first order logic is given.
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1 Introduction

The results of this article are known, however, the construction is new. The proofs adopted herein substantially
simplify known proofs in [2, 9, 10, 11, 12]. We assume familiarity of the basic notions of cylindric and relation
algebras. We follow [7]. In particular, CAn stands for the class of cylindric algebras of dimension n. RA stands
for the class of relation algebras. Any first order relational structure can be turned into a complex algebra. If the
structure has the right similarity type, then its complex algebra will have the same similarity type as cylindric
algebras, and similarly for relation algebras.

Definition 1.1 Let B = (B, Tk, Ekl)k,l<α be any structure with Tk ⊆ B × B and Ekl ⊆ B for all k, l < α.
The complex algebra of B is

CmB = (℘(B),∪, \, T ∗
k , Ekl)k,l<α,

where (℘(B),∪, \) is the Boolean algebra of all subsets of B and

T ∗
k (X) = {y : (∃x ∈ X)((x, y) ∈ Tk)}.

B is a cylindric algebra atom structure of dimension α if CmB is a CAα. B is strongly representable if CmB is a
representable cylindric algebra.

Definition 1.2 Let B = (B, I, ,̆ C) be any structure such that C ⊆ B × B × B, ˘ is a function from B to B,
and I ⊆ B. The complex algebra of B is

CmB = (℘(B),∪, \, I, ,̆ C∗),

where

C∗(X, Y ) = {z : (∃x ∈ X)(∃y ∈ Y )((x, y, z) ∈ C)}
and

X̆ = {x̆ : x ∈ X}.
B is a relation algebra atom structure if CmB is a relation algebra. B is strongly representable if CmB is a repre-
sentable relation algebra.
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The term algebra of B, TmB for short, is the subalgebra of CmB generated by the singletons. B is weakly repre-
sentable if TmB is representable. Note that if B is strongly representable, then it is weakly representable. (Here
we show that the converse fails.) Special structures are those arising from atomic algebras (hence the name ato-
mic) and those arising from basic matrices defined on a relation algebra.

Definition 1.3 Let A = (A, +,−, 0, 1, 1′, ,̆ ; ) be an atomic relation algebra. Let AtA denote the set of atoms.
Then A determines an atom structure (AtA, Id, ,̆ C) whose domain is the set of atoms of A, the identity Id is

Id = {e ∈ AtA : e ≤ 1′},

the conversion is the restriction of ˘on the atoms of A, and the ternary relation C is defined by

C(a, b, c) ↔ a; b ≥ c for all atoms a, b, c.

A triple in C is said to be a consistent triple.
Atomic cylindric algebras also determine atom structures.
Definition 1.4 Let A = (A, +,−, 0, 1, ci, dij)i,j<α be an atomic cylindric algebra of dimension α. Let AtA

denote the set of atoms. Then A determines an atom structure (AtA, Ti, Dij)i,j<α whose domain is the set of
atoms of A and for i, j < α, Dij = {e ∈ AtA : e ≤ dij}, and the binary relation Ti is defined by

Ti(a, b) ↔ a ≤ cib for all atoms a, b.

We now turn to defining basic matrices over an atomic relation algebra:
Definition 1.5 Let A be an atomic relation algebra. Let n > 2. Mn is the set of all n by n matrices of atoms

in A which satisfy the following conditions for all i, j, k < n:
(1) mkk ≤ 1′,
(2) mij = mji,
(3) mij ≤ mjk; mki.
The matrices in Mn are called basic matrices. Two matrices m and m′ in Mn agree up to k if mij = m′

ij

whenever i, j ∈ n \ {k}. For any i, j < n, let

Ti = {(m,m′) ∈ Mn × Mn : m and m′ agree up to i}, Eij = {m ∈ Mn : mij ≤ 1′}.

Then Mn = (Mn, Ti, Eij)i,j<n is a relational structure of cylindric type. Sometimes CmMn is a cylindric al-
gebra of dimension n. This occurs when Mn is a cylindric basis [13].

Our main theorem is:
Theorem 1.6 Let 2 < n < ω. Then there is a weakly representable relation atom structure that is not strongly

representable with an n-dimensional cylindric basis Mn. Furthermore, Mn is a weakly representable cylindric
algebra atom structure that is not strongly representable.

Examples of weakly representable atom structures that are not strongly representable are known [10, 11].
Here we give a new construction. A novelty occuring here is that our cylindric atom structure is defined from the
relation algebra atom structure. That is, we obtain our desired atom structures in one blow. (This is also done
in [2]. But we should add that the construction in [2] is completely different and much more complex.)

Our notation is mostly standard. An ordinal is the set of all smaller ordinals: for n < ω, n = {0, 1, . . . , n − 1}.
Maps are regarded formally as sets of ordered pairs. Thus, if θ is a map, we write |θ| for the cardinality of the
set that is θ. We write dom(θ), rng(θ) for the domain and range of θ, respectively. We write IdX for the identity
map on X . ℘(X) denotes the power set of X .

We write ā, x̄ for sequences. A sequence (or tuple) ā of elements of a set X , of length n, is formally an element
of the set nX . We write ai for the ith element of this sequence, and rng(ā) for {a0, . . . , an−1}. We may write ā
as (a0, . . . , an−1). If θ : X −→ Y is a map, we write θ(ā) for the sequence (θ(a0), . . . , θ(an−1)} ∈ nY . If ā
and b̄ are n-sequences, we write (ā 	−→ b̄) for the map {(ai, bi) : i < n}. For i < n, we write ā =i b̄ if aj = bj

for all j < n with j 
= i.
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2 The atom structure

Definition 2.1 Fix integers n ≥ 3 (it will be the dimension of the cylindric algebra) and N ≥ n(n − 1)/2.
The graph G consists of a countable infinite collection of pairwise disjoint N -cliques (that is, complete graphs
with N nodes).

The relation algebra atom structure α(G) is of the form ({1′} ∪ (G × n), R1′ , R̆, R;). The only identity atom
is 1′. All atoms are self-converse, so

R̆ = {(a, a) : a an atom}.
The colour of an atom (a′, i) ∈ G × n is i. The identity 1′ has no colour. A triple (a, b, c) of atoms in α(G) is
consistent if R;(a, b, c) holds. So the consistent triples are (a, b, c), where

1. one of a, b, c is 1′ and the other two are equal; or
2. none of a, b, c is 1′ and they do not all have the same colour; or
3. a = (a′, i), b = (b′, i), and c = (c′, i) for some i < n and a′, b′, c′ ∈ G, and there exists at least one graph

edge of G in {a′, b′, c′}.
α(G) is an instance of atom structures defined in [10], except that we use n colours instead of just three.

So α(G) can be checked to be a relation atom structure.
We need to prove more:
1. The term algebra over α(G) is representable.
2. The term cylindric algebra over the collection of all n × n matrices over α(G) is representable.
3. The complex algebra Cmα(G) is not representable.

3 Labelled graphs

Definition 3.1 A labelled graph is an undirected graph Γ such that every edge (unordered pair of distinct
nodes) of Γ is labelled by a unique label from (G ∪ {�}) × n, where � /∈ G is a new element. The colour of (�, i)
is defined to be i. The colour of (a, i) for a ∈ G is i, as before.

Notation 3.2 We will write Γ(x, y) for the label of an edge (x, y) in the labelled graph Γ. Note that these may
not always be defined: for example, Γ(x, x) is not.

If Γ is a labelled graph, and D ⊆ Γ, we write Γ � D for the induced subgraph of Γ on the set D (it inherits the
edges and colours of Γ, on its domain D). We write ∆ ⊆ Γ if ∆ is an induced subgraph of Γ in this sense.

Definition 3.3 Let Γ, ∆ be labelled graphs, and θ : Γ −→ ∆ be a map. θ is said to be a labelled graph em-
bedding, or simply an embedding, if it is injective and preserves all edges, and all colours, where defined, in both
directions. An isomorphism is a bijective embedding.

Now we define a class G of certain labelled graphs.
Definition 3.4 The class G consists of all complete labelled graphs Γ (possibly the empty graph) such that for

all distinct x, y, z ∈ Γ, writing (a, i) = Γ(y, x), (b, j) = Γ(y, z), (c, l) = Γ(x, z), we have:
(1) |{i, j, l}| > 1; or
(2) a, b, c ∈ G and {a, b, c} has at least one edge of G; or
(3) exactly one of a, b, c – say, a – is �, and (b, c) is an edge of G; or
(4) two or more of a, b, c are �.
Clearly, G is closed under isomorphism and under induced subgraphs.

3.1 The main construction

Proposition 3.5 There is a countable labelled graph M ∈ G with the following property:

If ∆ ⊆ ∆′ ∈ G, |∆′| ≤ n, and θ : ∆ −→ M is an embedding,
then θ extends to an embedding θ′ : ∆′ −→ M .
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P r o o f. Two players, ∀ and ∃, play a game to build a labelled graph M . They play by choosing a chain

Γ0 ⊆ Γ1 ⊆ · · ·

of finite graphs in G; the union of the chain will be the graph M .
There are ω rounds. In each round, ∀ and ∃ do the following. Let Γ ∈ G be the graph constructed up to this

point in the game. ∀ chooses ∆ ∈ G of size < n, an embedding θ : ∆ −→ Γ, and an extension ∆ ⊆ ∆+ ∈ G,
where

|∆+ \ ∆| ≤ 1.

These choices, (∆, θ,∆+), constitute his move. ∃ must respond with an extension Γ ⊆ Γ+ ∈ G such that θ ex-
tends to an embedding θ+ : ∆+ −→ Γ+. Her response ends the round.

The starting graph Γ0 ∈ G is arbitrary but we will take it to be the empty graph in G.
Lemma 3.6 ∃ never gets stuck – she can always find a suitable extension Γ+ ∈ G.

P r o o f. Let Γ ∈ G be the graph built at some stage, and let ∀ choose the graphs ∆ ⊆ ∆+ ∈ G and the em-
bedding θ : ∆ −→ Γ. Thus, his move is (∆, θ, ∆+).

We now describe ∃’s response. If Γ is empty, she may simply play ∆+, and if ∆ = ∆+, she plays Γ. Other-
wise, let F = rng(θ) ⊆ Γ. (So |F | < n.) Since ∆ and Γ � F are isomorphic labelled graphs (via θ), and G is
closed under isomorphism, we may assume with no loss of generality that ∀ actually played (Γ � F, IdF , ∆+),
where Γ � F ⊆ ∆+ ∈ G, ∆+ \ F = {δ}, and δ /∈ Γ. We may view ∀’s move as building a labelled graph Γ∗ ⊇ Γ,
whose nodes are those of Γ together with δ, and whose edges are the edges of Γ together with edges from δ to
every node of F . The labelled graph structure on Γ∗ is given by:

1. Γ is an induced subgraph of Γ∗ (i. e., Γ ⊆ Γ∗);
2. Γ∗ � (F ∪ {δ}) = ∆+.

Now ∃ has to extend Γ∗ to a complete graph on the same nodes and complete the colouring, which yields a
graph Γ+ ∈ G. Thus, she has to define the colour Γ+(β, δ) for all nodes β ∈ Γ \ F , in such a way as to meet the
conditions of Definition 3.4. She does this as follows. The set of colours of the labels in {∆+(δ, ϕ) : ϕ ∈ F}
has cardinality at most n − 1. Let i < n be a “colour” not in this set. ∃ labels (δ, β) by (�, i) for every β ∈ Γ \ F .
This completes the definition of Γ+.

It remains to check that this strategy works – that the conditions from the definition of G (Definition 3.4)
are met. It is sufficient to note that

1. if ϕ ∈ F and β ∈ Γ \ F , then the labels in Γ+ on the edges of the triangle (β, δ, ϕ) are not all of the same
colour (by choice of i);

2. if β, γ ∈ Γ \ F , then two of the labels in Γ+ on the edges of the triangle (β, γ, δ) are (�, i).
This proves the lemma.

Now there are only countably many finite graphs in G up to isomorphism, and each of the graphs built during
the game is finite. Hence ∀ may arrange to play every possible (∆, θ, ∆+) (up to isomorphism) at some round in
the game. Suppose he does this, and let M be the union of the graphs played in the game. We check that M is as
required. Certainly, M ∈ G, since G is clearly closed under unions of chains. Also, let ∆ ⊆ ∆′ ∈ G, |∆′| ≤ n,
and θ : ∆ −→ M be an embedding. We prove that θ extends to ∆′, by induction on d = |∆′ \ ∆|. If this is 0,
there is nothing to prove.

Assume the result for smaller d. Choose a ∈ ∆′ \ ∆ and let

∆+ = ∆′ � (∆ ∪ {a}) ∈ G.

As, |∆| < n, at some round in the game where the graph built so far was Γ, say, ∀ would have played (∆, θ,∆+)
(or some isomorphic triple). Hence, if ∃ constructed Γ+ in that round, there exists an embedding θ+ : ∆+ −→ Γ+

extending θ. As Γ+ ⊆ M , θ+ is also an embedding ∆+ −→ M . Since |∆′ \ ∆+| < d, θ+ extends inductively
to an embedding θ′ : ∆′ −→ M , as required.
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4 Model theory of M

Here we establish the main properties of the graph M of Proposition 3.5. To do so, we will need some (fairly)
standard notions from model theory, and we discuss these first.

Let L be a signature without function or constant symbols, and let A be an L-structure.

4.1 Classical semantics

Definition 4.1 Recall the definition of the n-variable infinitary language Ln
∞ω. We use variables x0, . . . , xn−1.

The atomic formulas are xi = xj for any i, j < n, and R(x̄) for any k-ary R ∈ L and any k-tuple x̄ of variables
taken from x0, . . . , xn−1. If ϕ is an Ln

∞ω-formula, then so are ¬ϕ and ∃xiϕ for i < n. If Φ is a set of Ln
∞ω-for-

mulas, then
∧

Φ and
∨

Φ are also Ln
∞ω-formulas. Of course, we write

∧{ϕ, ψ} as ϕ ∧ ψ, etc.
The logic Ln

∞ω is given semantics in A in the usual way, defining A � ϕ(ā) for an n-tuple ā of elements of A
by induction on the formula ϕ. Note that not all of x0, . . . , xn−1 need occur free in ϕ: so, for example,

A � x3 = x2(a0, . . . , an−1) iff a3 = a2.

We generally use the notation A � ϕ(ā) only when ā is an n-tuple, though if R ∈ L has arity k, we do write

A � R(a1, . . . , ak)

if (a1, . . . , ak) stands in the relation defined by R in A. A similar convention holds for A � a = b.
Definition 4.2 Let Ln denote the first order fragment of Ln

∞ω

Definition 4.3 An n-back-and-forth system on A is a set Θ of one-to-one partial maps A −→ A such that:
1. If θ ∈ Θ, then |θ| ≤ n.
2. If θ′ ⊆ θ ∈ Θ, then θ′ ∈ Θ.
3. If θ ∈ Θ, |θ| < n, and a ∈ A, then there is θ′ ⊇ θ in Θ with a ∈ dom(θ′) (forth).
4. If θ ∈ Θ, |θ| < n, and a ∈ A, then there is θ′ ⊇ θ in Θ with a ∈ rng(θ′) (back).

This is independent of the signature of A. We could require that Θ is non-empty, but this will always be so in the
applications in any case.

Definition 4.4 Recall that a partial isomorphism of A is a partial map θ : A −→ A that preserves all quanti-
fier-free L-formulas.

Fact 4.5 Let Θ be an n-back-and-forth system of partial isomorphisms on A, let ā, b̄ ∈ nA, and suppose
that θ = (ā 	−→ b̄) is a map in Θ. Then A � ϕ(ā) iff A � ϕ(b̄), for any formula ϕ of Ln

∞ω.

P r o o f. By induction on the structure of ϕ. If ϕ is quantifier-free, the result is immediate because θ is a partial
isomorphism of A. The Boolean cases are also evident. If the result holds inductively for ϕ, then consider ∃xiϕ.
If A � ∃xiϕ(ā), then for some ā′ ∈ nA with ā′ =i ā, we have A � ϕ(ā′). Let

θ− = θ � {aj : j 
= i}.

Then θ− ∈ Θ and |θ−| < n. Using the “forth” property of Θ, take θ′ ∈ θ extending θ− and defined on a′
i, and

let b̄′ = θ′(ā′). By the inductive hypothesis, A � ϕ(b̄′). Since b̄′ =i b̄, we have A � ∃xiϕ(b̄). The converse is si-
milar, using the “back” property of Θ.

4.2 Relativised semantics

Suppose that W ⊆ nA is a given non-empty set. We can relativise quantifiers to W , giving a new semantics �W

for Ln
∞ω, which has been intensively studied in recent times (see, e. g., [3]). If ā ∈ W :

1. For atomic ϕ, A �W ϕ(ā) iff A � ϕ(ā).
2. The Boolean clauses are as expected.
3. For i < n, A �W ∃xiϕ(ā) iff A �W ϕ(ā′) for some ā′ ∈ W with ā′ =i ā.
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Corollary 4.6 If the set W is Ln
∞ω-definable, Θ is an n-back-and-forth system of partial isomorphisms on A,

ā, b̄ ∈ W , and ā 	−→ b̄ ∈ Θ, then A �W ϕ(ā) iff A �W ϕ(b̄) for any formula ϕ of Ln
∞ω.

P r o o f. Assume that W is definable by the Ln
∞ω-formula ψ, so that W = {ā ∈ nA : A � ψ(a)}. We may

relativise the quantifiers of Ln
∞ω-formulas to ψ. For each Ln

∞ω-formula ϕ we obtain a relativised one, ϕψ , by in-
duction, the main clause in the definition being

(∃xiϕ)ψ = ∃xi(ψ ∧ ϕψ).

Then clearly, A �W ϕ(ā) iff A � ϕψ(ā), for all ā ∈ W . The corollary now follows from Fact 4.5.

4.3 Labelled graphs and model theory

We wish to view the graph M of Proposition 3.5 as a classical structure.
Definition 4.7 Let L+ be the signature consisting of the binary relation symbols (a, i), for each a ∈ G ∪ {�}

and i < n. Let L = L+ \ {(�, i) : i < n}. From now on, the logics Ln, Ln
∞ω are taken in this signature.

We may regard any non-empty labelled graph equally as an L+-structure, in the obvious way. The n-homoge-
neity built into M by its construction would suggest that the set of all partial isomorphisms of M of cardinality
at most n forms an n-back-and-forth system. This is indeed true, but we can go further.

Notation 4.8 Write the set of nodes of G as N × ω, where (a, i), (b, j) are in the same N -clique iff i = j.
So in (a, i), i is “the clique number” and a is the element of the clique.

Any element of α(G) \ {1′} is an element of G × n and will therefore be of the form ((a, i), j), where a < N ,
i < ω, and j < n. But we write it as (a, i, j) for simplicity.

Definition 4.9 Let χ be a permutation of the set ω ∪ {�}, Γ, ∆ ∈ G have the same size, and let θ : Γ −→ ∆
be a bijection. We say that θ is a χ-isomorphism from Γ to ∆ if for each distinct x, y ∈ Γ:

1. If Γ(x, y) = (a, i, j), then

∆(θ(x), θ(y)) =

{
(a, χ(i), j) if χ(i) 
= �,

(�, j) otherwise.

2. If Γ(x, y) = (�, j), then

∆(θ(x), θ(y)) ∈
{
{(a, χ(�), j) : a < N} if χ(�) 
= �,

{(�, j)} otherwise.

Definition 4.10 For any permutation χ of ω ∪ {�}, Θχ is the set of partial one-to-one maps from M to M of
size at most n that are χ-isomorphisms on their domains. We write Θ for ΘIdω∪{�} .

Lemma 4.11 For any permutation χ of ω ∪ {�}, Θχ is an n-back-and-forth system on M .

P r o o f. Clearly, Θχ is closed under restrictions. We check the “forth” property. Let θ ∈ Θχ have size t < n.
Enumerate dom(θ), rng(θ), respectively, as

{a0, . . . , at−1}, {b0, . . . , bt−1},
with θ(ai) = bi for i < t. Let at ∈ M be arbitrary, let bt /∈ M be a new element, and define a complete labelled
graph ∆ ⊇ M � {b0, . . . , bt−1} with nodes {b0, . . . , bt} as follows.

Choose distinct “nodes” es < N for each s < t such that no (es, i, j) labels any edge in M � {b0, . . . , bt−1}.
This is possible because N ≥ n(n − 1)/2, which bounds the number of edges in ∆. We can now define the colour
of edges (bs, bt) of ∆ for s = 0, . . . , t − 1.

1. If M(as, at) = (e, i, j), then

∆(bs, bt) =

{
(e, χ(i), j) if χ(i) 
= �,

(�, j) otherwise.
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2. If M(as, at) = (�, j), then

∆(bs, bt) =

{
(es, χ(�), j) if χ(�) 
= �,

(�, j) otherwise.

This completes the definition of ∆. It is easy to check that ∆ ∈ G. Hence, by Proposition 3.5, there is a graph
embedding ϕ : ∆ −→ M extending the map Id{b0,...,bt−1}. Note that ϕ(bt) /∈ rng(θ). So the map

θ+ = θ ∪ {(at, ϕ(bt))}

is injective, and it is easily seen to be a χ-isomorphism in Θχ and defined on at.
The converse, “back” property is similarly proved (or by symmetry, using the fact that the inverse of maps

in Θ are χ−1-isomorphisms).

As a special case, we obtain:
Corollary 4.12 The set Θ = ΘIdω∪{�} of partial L+-isomorphisms of M (partial isomorphisms of M regar-

ded as an L+-structure) of size at most n is an n-back-and-forth system on M .

But we can also derive a connection between classical and relativised semantics in M over the following set W :
Definition 4.13 Let W = {ā ∈ nM : M � (

∧
i<j<n,l<n ¬(�, l)(xi, xj))(ā)}.

W is simply the set of tuples ā in nM such that the edges between the elements of ā do not have a label invol-
ving �. Their labels are all of the form (a, i, j). Lemma 4.11 allows us to replace �-labels by suitable (a, i, j)-la-
bels within an n-back-and-forth system. Thus, we may arrange that the system maps a tuple b̄ ∈ nM \ W to a tu-
ple c̄ ∈ W , and by Fact 4.5 this will preserve any formula containing no relation symbols (a, i, j) that are “moved”
by the system. The next proposition uses this idea to show that the classical and W -relativised semantics agree.

Proposition 4.14 M �W ϕ(ā) iff M � ϕ(ā), for all ā ∈ W and all Ln-formulas ϕ.

P r o o f. The proof is by induction on ϕ. If ϕ is atomic, the result is clear; and the Boolean cases are simple.
Let i < n and consider ∃xiϕ. If M �W ∃xiϕ(ā), then there is b̄ ∈ W with b̄ =i ā and M �W ϕ(b̄). Induc-

tively, M � ϕ(b̄), so clearly, M �W ∃xiϕ(ā).
For the (more interesting) converse, suppose that M � ∃xiϕ(ā). Then there exists b̄ ∈ nM such that b̄ =i ā

and M � ϕ(b̄). Take Lϕ,b̄ to be any finite subsignature of L containing all the symbols from L that occur in ϕ or
as a label in M � rng(b̄). (Here we use the fact that ϕ is first order. The result may fail for infinitary formulas
with infinite signature.) Choose a permutation χ of ω ∪ {�} fixing any i′ such that some (a, i′, j) occurs in Lϕ,b̄,
and moving �.

Let θ = Id{am : m�=i}. Take any distinct l,m ∈ n \ {i}. If M(al, am) = (a, i′, j), then M(bl, bm) = (a, i′, j)
because ā =i b̄, so (a, i′, j) ∈ Lϕ,b̄ by definition of Lϕ,b̄. So χ(i′) = i′ by definition of χ. M(al, am) 
= (�, j)
(any j) because ā ∈ W . It now follows that θ is a χ-isomorphism on its domain, so that θ ∈ Θχ.

Extend θ to θ′ ∈ Θχ defined on bi, using the “forth” property of Θχ (Lemma 4.11). Let c̄ = θ′(b̄). Now by
choice of χ, no labels on edges of the subgraph of M with domain rng(c̄) involve �. Hence, c̄ ∈ W .

Moreover, each map in Θχ is evidently a partial isomorphism of the reduct of M to the signature Lϕ,b̄. Now ϕ
is an Lϕ,b̄-formula. Hence by Fact 4.5 applied to Lϕ,b̄ and Lemma 4.11, we have that

M � ϕ(ā) iff M � ϕ(c̄).

So M � ϕ(c̄). Inductively, M �W ϕ(c̄). Since c̄ =i ā, we have M �W ∃xiϕ(ā) by definition of the relativised
semantics. This completes the induction.

5 The algebra of Ln-definable subsets of nM

We can now extract from the labelled graph M of Proposition 3.5 a relativised set algebra A, which will turn out
to be representable (hence a cylindric algebra) and atomic.

First, we recall some relevant facts about cylindric algebras.
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5.1 Cylindric algebras

We do not wish to give a comprehensive introduction to these (those who want one may read the standard refe-
rence [7]), but we feel we should list those of their features that are relevant here.

Let n be an ordinal (finite, in this paper). Recall that an n-dimensional cylindric algebra is an algebra A in
the signature consisting of the Boolean operations ·,−, 0, 1, constants dij for i, j < n (“diagonals”), and unary
functions ci for i < n (“cylindrifications”), and satisfying certain equations which can be found in [7] and which
we will not go into here. We only need to know that every cylindric algebra is a Boolean algebra with operations,
and that the complex algebra of the atom structure of any atomic cylindric algebra is also a cylindric algebra.

We generally write dAij , cAi , etc., for the interpretetions of the respective operation in A. An n-dimensional set
algebra is an algebra of n-ary relations of the form

A = (A,∩,−, ∅, W, dAij , c
A
i )i,j<n,

where W is of the form nU for some non-empty set U , (A,∩,−, ∅,W ) is a Boolean subalgebra of the Boolean
algebra (℘(W ),∩, \, ∅,W ), dAij = {ā ∈ W : aj = aj}, and for X ∈ A,

cAi X = {ā ∈ W : ā =i b̄ for some b̄ ∈ X}.
The set W is called the unit of A. Set algebras are automatically cylindric algebras, but not conversely, even up
to isomorphism. A relativised set algebra (Crsn) is similar, but has a weaker condition on W : we only require
that W ⊆ nU for some set U . Relativised set algebras are not necessarily cylindric algebras.

Let A be an algebra of the similarity type of cylindric algebras. A representation of A is an algebra embed-
ding h from A into a direct product of set algebras, and A is said to be representable if there is such a represen-
tation. Because the class of cylindric algebras is a variety and so closed under taking products and subalgebras,
any representable algebra – for example, a representable relativised set algebra – is a cylindric algebra.

5.2 Definition of A
Θ will continue to denote the set of all partial L+-isomorphisms of M of size ≤ n, it is an n-back-and-forth sys-
tem on M . W remains as in Definition 4.13.

Definition 5.1
1. For an Ln

∞ω-formula ϕ, we define ϕW to be the set

{ā ∈ W : M �W ϕ(ā)}.
Here we use the relativised semantics of Section 4.2.

2. We define A to be the relativised set algebra with domain {ϕW : ϕ a first order Ln-formula} and unit W ,
endowed with the algebraic operations dij , ci, etc., in the standard way (see the passage on cylindric algebras
above).

Note that A is indeed closed under the operations and so is a bona fide relativised set algebra. For, reading off
from the definitions of the standard operations and the relativised semantics, we see that for all Ln-formulas ϕ, ψ,

(i) −A(ϕW ) = (¬ϕ)W ;
(ii) ϕW ·A ψW = (ϕ ∧ ψ)W ;
(iii) dAij = (xi = xj)W for all i, j < n;

(iv) cAi (ϕW ) = (∃xiϕ)W for all i < n.

5.3 A is representable

Proposition 5.2 A is representable. Hence, A is a cylindric algebra.

P r o o f. Let S be the set algebra with domain ℘(nM) and unit nM . By Proposition 4.14, the map h : A −→ S
given by h : ϕW 	−→ {ā ∈ nM : M � ϕ(ā)} can be checked to be well-defined and one-to-one. It clearly re-
spects the cylindric algebra operations. So it is a representation of A.
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5.4 Atoms of A
Here we show that A is atomic.

Definition 5.3 A formula α of Ln is said to be a maximal conjunction of atomic formulas (an MCA) if
(i) M � ∃x0, . . . , xn−1α;

(ii) α is of the form∧
i �=j<n αij(xi, xj),

where for each i, j, αij is either xi = xj or R(xi, xj) for some binary relation symbol R of L.
The rough idea is that “a formula α being MCA” means that the set defined by α in nM is nonempty, and that

if M � α(ā), then the graph M � rng(ā) is determined up to isomorphism and has no edge whose label is of the
form (�, i). So any two tuples satisfying α are isomorphic and one is mapped to the other by the n-back-and-forth
system Θ. By Fact 4.5, no Ln

∞ω-formula can distinguish them. So α defines an atom of A – it is literally indivi-
sible. Since the MCA-formulas clearly “cover” W , the atoms defined by them are dense in A. So A is atomic,
as required. This, informally, is the content of the next two results.

Lemma 5.4 Let ϕ be any Ln
∞ω-formula, and α any MCA-formula. If ϕW ∩ αW 
= ∅, then αW ⊆ ϕW .

P r o o f. Take ā ∈ ϕW ∩ αW . Let b̄ ∈ αW be arbitrary. It is clear that the map (ā 	−→ b̄) is in Θ. Also, W is
Ln
∞ω-definable in M , since we have

W = {ā ∈ nM : M � (
∧

i<j<n(xi = xj ∨
∨

R∈L R(xi, xj)))(ā)}.
By Corollaries 4.6 and 4.12, we have M �W ϕ(ā) iff M �W ϕ(b̄). Since M �W ϕ(ā), we have M �W ϕ(b̄).
Since b̄ was arbitrary, we see that αW ⊆ ϕW .

Definition 5.5 Let F = {αW : α an MCA-Ln-formula} ⊆ A.
Evidently, W =

⋃
F .

Proposition 5.6 A is an atomic algebra, with F as its set of atoms.

P r o o f. First, we show that any non-empty element ϕW of A contains an element of F . Take ā ∈ W such
that M �W ϕ(ā). Since ā ∈ W , there is an MCA-formula α such that M �W α(ā). By Lemma 5.4, αW ⊆ ϕW .
By definition, if α is an MCA-formula, then αW is non-empty. By Lemma 5.4 again, if ϕ is an Ln-formula such
that ∅ 
= ϕW ⊆ αW , then ϕW = αW . It follows that each αW (for MCA α) is an atom of A.

Remark 5.7 It follows from the foregoing that the identity map on A is a complete relativised representation
of A – an isomorphism from A onto a relativised set algebra that preserves infinite meets and joins where defined.

In any event, A has an atom structure, which we denote as AtA as usual. We now show that the atom structure
of A is isomorphic to the atom structure consisting of n by n basic matrices over α(G).

Proposition 5.8 The atom structure of A is isomorphic (as a cylindric algebra atom structure) to the atom
structure Mn of all n-dimensional basic matrices over the relation algebra atom structure α(G).

P r o o f. For each m ∈ Mn, let αm =
∧

i,j<n αij . Here αij is xi = xj if mij = 1′ and R(xi, xj) otherwise,
where R = mij ∈ L. Then the map (m 	−→ αW

m )m∈Mn
is a well-defined isomorphism of n-dimensional cylin-

dric algebra atom structures.

We conclude that there is a representable atomic n-dimensional cylindric algebra (namely A) with atom struc-
ture Mn. It follows that the subalgebra of CmMn generated by the atoms, or the term algebra over Mn, is repre-
sentable. We recall that RaRCAn stands for the class of relation algebra reducts of algebras in RCAn, while RRA
stands for the class of representable relation algebras.

Corollary 5.9 The term relation algebra over the atom structure α(G) is representable.

P r o o f. It can be checked that the relation algebra reduct B of A is an atomic relation algebra with atom struc-
ture isomorphic to α(G). So B ∈ RaRCAn ⊆ RRA. Since there exists a representable atomic relation algebra B
with atom structure α(G), it follows that the term algebra over α(G) is representable.
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6 The complex algebras

Now we prove that Cmα(G) is not representable. This will imply that the full complex cylindric algebra over Mn

is not representable either. Our result follows from Ramsey’s Theorem by noting that G has a finite colouring.
In more detail:

Definition 6.1 Let Γ = (V,E) be an undirected graph. V is the set of vertices and E is an irreflexive, sym-
metric, binary relation on V . Let C be a non-empty set of colours:

1. X ⊆ V is independent if (x, y) /∈ E for all x, y ∈ X .
2. A function f : V −→ C is called a C-colouring if (v, w) ∈ E implies f(v) 
= f(w).
As before, write the set of nodes of G as N × ω, where (a, i), (b, j) are in the same N -clique iff i = j. So in

the node (a, i), i is “the clique number” and a is the element of the clique.
Any element of α(G) \ {1′} is an element of G × n and will therefore be of the form ((a, i), j), where a < N ,

i < ω, and j < n. But again we write it as (a, i, j) for simplicity. We can reformulate the definition of α by listing
the forbidden triples. These are the complements of consistent ones. We have that (1′, c, d) is forbidden if c 
= d.
Also, the triple ((a, i, k), (a′, i′, k), (a′′, i′′, k)) is forbidden iff (a, i), (a′, i′), (a′′, i′′) are independent in N × ω.
The map f : N × ω −→ N defined by f(k, i) = k is a finite colouring. For X ⊆ N × ω and k < n define

(X, k) = {(a, i, k) : (a, i) ∈ X}.

A non-zero element s of Cmα(G) is monochromatic if s ≤ 1′ or s ≤ (Γ, k) for some k < n.
Theorem 6.2 Cmα(G) is not representable. Hence the full complex cylindric algebra over the set of n by n

basic matrices is not representable either.

P r o o f. Assume for contradiction that g : Cm(α(G)) −→ C is an embedding into a proper relation set alge-
bra C with base set X . G has a finite colouring, so partition the nodes of N × ω into sets {Cj : j < N} such
that there are no edges within any Cj . Let

J = {1′, (Cj , k) : j < N, k < n}.

Then
∑

J = 1 in Cmα. As J is finite, for any x, y ∈ X there is P ∈ J with (x, y) ∈ h(P ). Since Cmα(G) is infi-
nite, X is infinite. By Ramsey’s Theorem, there are distinct xi ∈ X (i < ω) and P ∈ J such that (xi, xj) ∈ h(P )
for all i < j < ω. It is clear that P 
= 1′. Also (P ; P ) · P 
= 0. This follows from the fact that if x0, x1, x2 ∈ X ,
a, b, c ∈ Cmα(G), (x0, x1) ∈ h(a), (x1, x2) ∈ h(b), and (x0, x2) ∈ h(c), then (a; b) · c 
= 0. Now P is mono-
chromatic, it follows from the definition of α(G) that (P ; P ) · P = 0. This contradiction shows that Cmα(G) is
not representable. It follows that CmMn is not representable either since we have a relation algebra embedding
of Cmα(G) onto RaCmMn. Thus representability of the latter implies representability of the former.

For undefined terminolgy in the coming corollaries, the reader is referred to [11].
Corollary 6.3

(1) There exist two atomic relation algebras with the same atom structure, only one of which is representable.
(2) RRA is not closed under completions and is not atom-canonical.
(3) There exists a non-representable relation algebra with a dense representable subalgebra.
(4) [17] RRA is not Sahlqvist axiomatizable.
(5) There exists an atomic relation algebra with no complete representation.

P r o o f. Write α for α(G).
(1) Tmα and Cmα have the same atom structure. Tmα is representable and Cmα is not.
(2) Cmα is the completion of Tmα. Cm(AtRRA) is not contained in RRA. Thus RRA is not atom-canonical.
(3) Tmα is dense in Cmα.
(4) RRA is a conjugated variety that is not closed under completions, hence it is not Sahlqvist axiomatizable.
(5) Tmα has no complete represention; else Cmα would be representable.

www.mlq-journal.org c© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



304 T. Sayed Ahmed: Weakly representable atom structures that are not strongly representable

The analogous result holds for RCAn. More precisely:
Corollary 6.4

(1) Let 2 < n < ω. There exist two atomic cylindric algebras of dimension n with the same atom structure, only
one of which is representable.

(2) RCAn is not closed under completions and is not atom-canonical.
(3) There exists a non-representable RCAn with a dense representable subalgebra.
(4) [17] RCAn is not Sahlqvist axiomatizable.
(5) There exists an atomic representable binary generated CAn with no complete representation.

P r o o f. TmMn and CmMn are the cylindric algebras that do the job.

In [9] and [12] the so-called rainbow construction is used to prove the above corollary. Here we show, by our
simple choice of the graph G, that this degree of complexity is not really needed. The fact that our cylindric alge-
bras are binary generated is also new. Next, we give an application to finite variable fragments of first order logic.

7 Omitting types for finite variable fragments

We work in usual first order logic. In the process, we use standard notation. As before L denotes a signature with
no function symbols nor constants. Let T be a countable consistent Ln first order theory, or simply a theory, i. e.,
T is a set of first order formulas each of which is built up of at most n variables. In addition to that T has a model.
Let Γ be a countable set of Ln formulas that is consistent over T , i. e., no contradiction is derivable from T ∪ Γ,
equivalently T ∪ Γ also has a model. For a formula ϕ and a first order structure M in the language of ϕ, write ϕM

to denote the set of all assignments that satisfy ϕ in M , i. e.,

ϕM = {s ∈ nM : M � ϕ(s)}.

For example if M = (N,<) and ϕ is the formula x1 < x2, then any s ∈ nN is in ϕM if s1 < s2.
Unless otherwise specified T and Γ are as specified above.
Definition 7.1

(i) We say that Γ is implicitly principal over T if for all M � T ,⋂
ϕ∈Γ ϕM 
= ∅.

(ii) Let k ∈ ω. We say that Γ is explicitly k-principal over T , or simply explicitly k-principal, if there exists a
formula ϕ consistent with T such that ϕ is built up of at most k variables with at most the first n variables free,
and ϕ isolates Γ, i. e.,

T � ϕ ⇒ ψ for all ψ ∈ Γ.

We sometimes say that Γ is explicitly k-principal, when T is clear from context.

The classical Henkin-Orey Omitting Types Theorem [6, Theorem 2.2.9], or rather the contrapositive thereof,
implies that for countable languages, if Γ is implicitly principal (over T ), then Γ is explicity k principal (over T )
for some k ∈ ω. The question we address here is:

Question 7.2 Do we always guarantee that k ≤ n, i. e., the formula isolating Γ, ϕ say, stays inside Ln, or do
we have to occasionally “step outside” Ln?

In other words, could ϕ be always chosen to be built up of at most n variables, or do we perhaps, in certain
cases, need more than n variables? And if so, is there perhaps an upper bound on the number of variables needed?
The following result was announced in [4]. It contrasts positive results on omitting types proved in [14].

Theorem 7.3 For 2 < n < k < ω there exists a countable Ln-theory T , a type Γ consistent over T such that Γ
is implicitly principal but not k-explicitly principal over T .
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S k e t c h o f pr o o f. This theorem was proved in [15] modulo the existence of certain atom structures, which
we now have. αl denotes the atom structure built on G, where n = l (see above). Now fix n < k. Let Mk be the
cylindric basis for αk. Let Mn be the cylindric bases for αn. Then TmMn

∼= NrnTmMk. Here NrnTmMk de-
notes the neat n-reduct of TmMk [7, Definition 2.6.28]. The rest follows from the properties of the atom struc-
tures constructed herein together with [15]. However, for the reader’s convenience we repeat the argument in [15].
For brevity, let A = TmMn, and let B = TmMk. By a straighforward identification, we can assume without
loss of generality that A = NrnB. By [8, Theorem 4.3.28(ii)] there is a countable first order language Λ such that

B ∼= (FmΛk/T )

for some (countable) Lk-theory T ⊆ FmΛk . Here Λk is the restriction of the language Λ to the first k variables
and FmΛk/T is the Lindenbaum-Tarski representable k-dimensional cylindric algebra corresponding to T . It can
be assumed that T consists of sentences only, i. e., that no free variables occur in formulas in T . It follows that

A ∼= FmΛn/T.

Fix θ an isomorphism from FmΛn/T to A and let AtA denote the set of atoms of A. Put

Γ =
⋃{¬ϕ/T : θ(ϕ/T ) ∈ AtA}.

Recall that ϕ/T denotes the equivalence class of ϕ, consisting of all formulas equivalent to ϕ modulo T . Note
that Γ is a set of Ln formulas. Since A is atomic and A = NrnB then it follows that the supremum of AtA eva-
luated in B is equal to the unit, in symbols

∑B AtA = 1. Indeed, we have
∑AAtA = 1 since A is atomic and

the Boolean reduct of A is a complete subalgebra of that of B. Thus we have that the following infimum is equal
to the least element, in symbols

(+)
∧{θ(ψ/T ) : ψ ∈ Γ} = 0.

Now we check that Γ is as desired, i. e., Γ is implicitly principal but not k-explicitly principal. To see that Γ is not
explicitly k-principal, assume to the contrary that there exists ϕ ∈ FmΛk such that ϕ is consistent with T and ϕ
isolates Γ. We can assume without loss of generality that the free variables occurring in ϕ are among the first n.
But then we get that for all ψ ∈ Γ,

0 < θ(ϕ/T ) ≤ θ(ψ/T ).

This contradicts (+). To see that Γ is implicitly principal, assume to the contrary that Γ can be omitted, i. e., there
exists M � T such that

⋂
ϕ∈Γ ϕM = ∅. Then

⋃
ϕ∈Γ(¬ϕM) = nM.

But then {ϕM : ϕ ∈ FmΛn} would be the domain of a cylindric set algebra that is an atomic representation of A
in the sense of [9, Definition 4], thus by [9, Theorem 5], it is a complete representation of A. But this contradicts
the fact that A is not completely representable.

A different version of the above theorem is proved in [2]. We note that our construction quite easily leads to the
(new) fact that the Omitting Types Theorem fails for finite first order definable extensions of finite variable frag-
ments of first order logic studied in [5] and [16] as long as the number of variables is > 2.
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