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Abstract. Let 1 < n < ω and β > n. We show that the class NrnCAβ of n-dimensional
neat reducts of β-dimensional cylindric algebras is not closed under forming elementary
subalgebras. This solves a long-standing open problem of Tarski and his co-authors Andréka,
Henkin, Monk and Németi. The proof uses genuine model-theoretic arguments.
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0 Introduction and main result

The theory of cylindric algebras of dimension β, β an ordinal, is an abstract algebraic
analogue of a first order logic with β-many variables xi with 0 ≤ i < β, just as the
theory of Boolean algebras is an abstract algebraic analogue of sentential logic. In ad-
dition to the Boolean operations, cylindric algebras have unary cylindric operations
ci one for each index i < β. The operation ci is an abstract version of the unary
operation on first order formulas of existential quantification with respect to the ith
variable xi. Cylindric algebras also have distinguished constants dij for i, j < β. The
constant dij is called a diagonal element and is an abstract version of the atomic iden-
tity formula xi = xj in first order logic. The class of cylindric algebras of dimension β
is denoted by CAβ and is axiomatized by finitely many equational schemata that aim
at capturing the essential algebraic properties of existential quantification and atomic
indentity formulas. We consider A ∈ CAβ to be of the form 〈A, · ,−, ci, dij〉i,j∈β,
where 〈A, · ,−, 〉 – the Boolean reduct of A – is a Boolean algebra, with “·” denoting
Boolean meet and “−” denoting Boolean complementation. Suppose that A is a CAβ

and suppose that n < β. Let A denote the universe of A. Consider the set B of ele-
ments of A that are closed under the cylindric operations ci for n ≤ i < β, that is, the
elements a ∈ A for which cia = a whenever n ≤ i < β. The algebra whose universe is
B, and whose operations are the Boolean operations of A and the cylindric operations
and constants with indices less than n is called the neat reduct of A to the dimension
n, or simply the neat n-reduct of A, and is denoted by N rnA. If A represents a first
order theory with β-many variables, then N rnA is the algebra of formulas using β
many variables in which only the first n variables are allowed to be free. The class
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of all neat n-reducts of cylindric algebras of dimension β with n < β is denoted by
NrnCAβ . Thus NrnCAβ = {N rnA : A ∈ CAβ}. The notion of neat reducts and
the related notion of neat embeddings play a key role in the representation theory
of cylindric algebras and variants thereof, like Halmos’ polyadic algebras. In fact, a
classical result of Henkin, the so-called Neat Embedding Theorem, or NET for short,
in [8] states that the class of representable cylindric algebras of dimension α coincides
with the class of algebras (of the same dimension) having the neat embedding property.
A ∈ CAα has the neat embedding property, if it can be neatly embedded in a CAα+ω,
i. e., if A can be embedded into N rαB for some B ∈ CAα+ω (see [8]). Representation
results, like the NET of Henkin, are proved in algebraic logic to be equivalent to
completeness in the corresponding logics (cf. [9, Section 4.3.], [3], and [25]). Other
metalogical properties, like interpolation and omitting types, are investigated (from
an algebraic point of view) in connection to special neat embeddings in [32, 30, 31,
5]. In this note we shall prove:

T h e o r em 1 (Main Theorem). Let 2 < n < ω, and let β be an ordinal > n. Then
the class NrnCAβ is not closed under elementary subalgebras. In particular, NrnCAβ

is not first order axiomatizable.
In other words, if we start with the class of algebras that arise from a first order

logic with β-many variables, and then restrict our attention to those algebras that
concern formulas with n free variables with 2 < n < ω ∩ β, then this class cannot be
axiomatized by means of first order sentences. This solves the finite part of the long-
standing open problem 4.4 in the monograph [9] on cylindric algebras by Henkin,
Monk and Tarski. Theorem 1 also confirms a conjecture of Németi formulated
as Conjecture 1 in [21]. In this paper, Németi proves that for any pair of ordinals
n < β, the class NrnCAβ is closed under ultraproducts. By the celebrated Keisler-
Shelah Ultrapower Theorem (cf. [6, Theorem 6.15]) our Theorem 1 implies that for
1 < n < β ∩ ω, the class NrnCAβ is not closed under ultraroots. Various refinements
of our result summarized in Corollary 3 below also solve the finite part of Problem
18 on [10, p. 312]. We note that Andréka and Németi prove in 8.6 of [10, Part II]
that Nr2CAβ is not elementary. Theorem 1 was announced in [27], and a different
proof of Theorem 1 is given in [29]. A novelty that occurs here is the proof method,
which – as indicated in the title – uses genuinely model-theoretic arguments inspired
by a theorem of Fräıssé. The problem as to whether the class of neat reducts is closed
under (elementary) subalgebras has a long history and dates back to Problem 2.11 in
[8] and to related questions raised by Pigozzi in [24] (cf. [24, Remark 2.2.21]). An
implicit form of this problem appears as item (v) in the introduction of the monograph
[9] as a conjecture of Tarski whose proof could not be reconstructed. The reader is
referred to [21, 32] for further elaboration of this problem.

1 Proofs

In this section we prove Theorem 1. For simplicity of notation we give the proof
for n = 3. We start by formulating a Lemma (Lemma 2) stipulating the existence
of a first order structure M . This first order structure M , among other conditions,
enjoys quantifier elimination, meaning that every formula in the first order language
of M is equivalent to a quantifier free one. Because M has quantifier elimination,
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the cylindric set algebra A, consisting of all those relations definable in M using only
3 variables, will be a neat reduct. Using the other conditions, we then extract an
elementary subalgebra B of A that is not a neat reduct. We proceed as follows. First
we prove (modulo Lemma 2) that the class of neat reducts is not elementary, then
we prove our Lemma at the end of this section. To formulate Lemma 2 we need the
following notations:

By S3 we denote the set of all permutations of 3. XY denotes the set of functions
from X to Y . For u, v ∈ 33 and i < 3 we write ui for u(i) < 3, and we write u ≡i v if
u and v agree except for i, i. e., if uj = vj for all j ∈ 3\{i}. We identify (notationally)
a structure M with its domain. For a symbol R of the signature of M we write RM

for the interpretation of R in M .
Now we are ready to formulate our Lemma.
L emma 2. Let L be a signature consisting of the unary relation symbols P0, P1, P2

and uncountably many 3-ary predicate symbols. For u ∈ 33, let χu be the formula∧
i<3 Pui(xi). Then there exists an L-structure M with the following properties:

(1) M has quantifier elimination, i. e., every L-formula is equivalent in M to a
Boolean combination of atomic formulas.
(2) The sets PM

i for i < 3 form a partition of M .
(3) M � ∀x0x1x2 (R(x0, x1x2)→

∨
u∈S3

χu), for all R ∈ L.
(4) M � ∃x0x1x2 (χu ∧ R(x0, x1, x2) ∧ ¬S(x0, x1, x2)) for all distinct ternary

R, S ∈ L and u ∈ S3.
(5) For u ∈ S3 and i < 3, M � ∀x0x1x2 (∃xi χu ↔

∨
v∈ 33,v≡iu

χv).
(6) For u ∈ S3 and any L-formula ϕ(x0, x1, x2), if M � ∃x0x1x2 (χu ∧ ϕ), then

M � ∀x0x1x2 (∃xi χu ↔ ∃xi (χu ∧ ϕ)) for all i < 3.

Ou t l i n e o f p r o o f. First we explain the idea behind the construction of such
an M . In the process we give a sketchy outline of the proof that the class of neat
reducts is not elementary in order to pave the way for a smooth (formal) proof of
Theorem 1.

Property (1) of quantifier elimination postulates that the set of atomic formulas

J = {R(y0, y1, y2) : {y0, y1.y2} = {x0, x1, x2} and R ∈ L is a ternary relation}
∪ {Pi(xj) : i, j < 3} ∪ {xi = xj : i, j < 3}

is an elimination set for M . This means that every L-formula is equivalent in M to
a Boolean combination of formulas in J . This implies that the cylindric set algebra
consisting of those relations definable using only the first three variables is a neat
reduct. In more detail, for an L-formula ϕ, let ϕM be the set of all assignments
satisfying ϕ in M , i. e., ϕM = {s ∈ ωM : M � ϕ[s]}. For an ordinal α, let Csα denote
the class of cylindric set algebras of dimension α. Let Aω be the Csω with domain
{ϕM : ϕ ∈ L} and operations (well-) defined by (cf. [9])3)

ϕM · ψM = ϕM ∩ ψM = (ϕ ∧ ψ)M , −ϕM = (¬ϕ)M ,

3)In [9, Section 4.3, Definition 4.3.4] Aω would be denoted by CfM
3 , which is the set algebra based

on M . In this connectionwe note that A is a regular locally finite ω-dimensional cylindric set algebra.
The notion of a regular locally finite set algebra will be recalled below.
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and for i, j < ω

dij = (xi = xj)M , ci(ϕM ) = (∃xiϕ)M .

Now we write L3 for the set of all L-formulas using only the first three variables.
A moment’s reflection reveals that property (1) equates the Cs3 A having domain
{ϕM : ϕ ∈ L3} with the (possibly bigger) Cs3 having domain

{ϕM : ϕ ∈ L and ϕ contains x0, x1, x2 as free variables},
with the cylindric operations defined for both as for the operations defined for Aω.
But the latter, as easily checked, is isomorphic to N r3Aω , so property (1) guarantees
that A ∈ Nr3CAω. The rest of the conditions are designed to extract an elementary
subalgebra of A that is not in Nr3CA4. But let us first understand the (abstract)
structure of A based on M . For the sake of brevity, let 1u denote χM

u . Then it follows
from property (2) that the set {1u : u ∈ 33} forms a partition of 3M , the unit of A.
If u ∈ S3, i. e. u is a permutation, then, by property (4), below every 1u there are
uncountably many pairwise distinct non-empty elements, namely the R(x0, x1, x2)M ’s
intersected with 1u. Such elements are big as far as the cylindrifications are concerned,
that is for i < 3 we have by properties (3), (6)

ci[R(x0, x1, x2)M ∩ 1u] = ci(1u) =
⋃{1u : u ≡i v}.

Having explained the idea behind the conditions of Lemma 2, we explain how we
can obtain an elementary subalgebra of A that is not a neat reduct. For u ∈ 33, let
Au stand for the relativisation of A to 1u, i. e., Au = {x ∈ A : x ≤ 1u}. Au is the
domain of a Boolean set algebra which we denote by Au. Then for u ∈ S3, Au is
uncountable. Because {1u : u ∈ 33} is a partition of the unit of A, it follows that
the Boolean reduct of A is isomorphic to the Boolean product

∏
u∈33Au. Moreover,

we can (and will) expand the language of Boolean algebras by diagonal elements and
the constants 1u in such a way that the cylindric algebra A becomes interpretable
in this product. Then we extract an elementary subalgebra B of A by an infinite
cardinality twist. B is obtained from A by keeping only countably many elements
below 1Id, where Id is the identity function on 3, and discarding the rest of the
elements below 1Id. In the product, this corresponds to replacing the component AId

by an elementary countable Boolean subalgebra BId of AId and giving the resulting
algebra the interpretation given to the Boolean product

∏
u∈ 33Au. This will not be

witnessed by first order logic and will ensure that the resulting structure B is not a
neat reduct. In fact, B will not be even in Nr3CA4. The idea is that if B were a neat
reduct, then using a substitution term definable in one extra dimension, we generate
uncountably many elements in the component BId, which contradicts that the latter
(by its very construction) is countable. Now we implement the details of the above
sketch.

From now on, we follow the conventions of algebraists. We do not distinguish
between an algebra A and its domain A, and denote both by A. If C is a cylindric
algebra, we let boole(C) denote its Boolean reduct of C. For a non-empty set I,
and a family of algebras 〈Ai : i ∈ I〉 (of the same signature) indexed by I, we let∏

i∈I Ai denote the product of the Ai’s. For a Boolean algebra 〈B, · ,−〉 and a finite
subset X of B, we write

∧
X and

∑
X for the product and the sum of elements of X,

respectively. In particular + denotes the Boolean join.
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D e t a i l s o f p r o o f . Fix L and M as in Lemma 2. Let Aω ∈ Csω, and A ∈ Cs3
be as specified above. That is Aω = {ϕM : ϕ ∈ L} and A = {ϕM : ϕ ∈ L3}.
Then A ∼= Nr3Aω via the map i : A −→ Aω defined by i(ϕM ) = ϕM . This map
is of course well defined. Furthermore, quantifier elimination in M guarantees that
this map is onto NrnAω. For u ∈ 33, let Au denote the relativisation of A to χM

u ,
i. e., Au = {x ∈ A : x ≤ χM

u }. Then Au is uncountable for every u ∈ S3, because
by property (4) of Lemma 2, the sets (χu ∧ R(x0, x1, x2))M , for R ∈ L are dis-
tinct elements of Au. Define a map f : A −→ ∏

u∈ 33 Au by f(a) = 〈a · χu〉u∈ 33.
We will expand the language of the Boolean algebra

∏
u∈ 33 boole(Au) in such a way

that the cylindric algebra A becomes interpretable in the expanded structure. For
this we need

D e f i n i t i o n 3. Let P denote the following structure for the signature of Boolean
algebras expanded by constant symbols 1u for u ∈ 33 and dij for i, j ∈ 3:

(1) The Boolean part of P is the Boolean algebra
∏

u∈ 33 boole(Au),

(2) 1P
u = f(χM

u ) = 〈0, . . . , 0, 1, 0, . . .〉 (with the 1 in the uth place) for each u ∈ 33,
(3) dP

ij = f(dA
ij) for i, j < 3.

We now show (cf. [18, 5.3, p. 212]), that A is interpretable in P . For this it is
enough to show that f is one to one and that ran(f) (range of f) and the f-images of
the graphs of the cylindric algebra functions in A are definable in P . Since the χM

u ’s
form a partition of the unit of A, each a ∈ A has a unique expression in the form∑

u∈ 33(a · χM
u ), and it follows that f : boole(A) −→ ∏

u∈ 33 boole(Au) is a Boolean
isomorphism.

So the f-images of the graphs of the Boolean functions on A are trivially definable.
f is bijective so ran(f) is definable by x = x. For the diagonals, f(dA

ij) is definable by
x = dij . Finally, we consider cylindrifications. For S ⊆ 33, i < 3, let tS be the closed
term

∑{1v : v ∈ 33, v ≡i u for some u ∈ S}. Let
ηi(x, y) =

∧
S⊆33(

∧
u∈S x · 1u �= 0 ∧ ∧

u∈ 33\S x · 1u = 0→ y = tS).

We claim that for all a ∈ A, b ∈ P , we have P � ηi(f(a), b) iff b = f(cA
i a). To see this,

let f(a) = 〈au〉u∈ 33. So in A we have a =
∑

u∈ 33 au. Let u be given. Then au has the
form (χi ∧ ϕ)M for some ϕ ∈ L3, so that cA

i (au) = (∃xi (χu ∧ϕ))M . By property (6)
of Lemma 2, if au �= 0, this is (∃xi χu)M ; by property (5), this is (

∨
v∈ 33,v≡iu

χv)M .
Let S = {u ∈ 33 : au �= 0}. By normality and additivity of cylindrifications we have

cA
i (a)=

∑
u∈ 33 cA

i au =
∑

u∈S cA
i au =

∑
u∈S(

∑
v∈ 33, v≡iu

χM
v )

=
∑{χM

v : v ∈ 33, v ≡i u for some u ∈ S}.
So P � f(cA

i a) = tS . Hence it follows that P � ηi(f(a), f(cA
i a)). Conversely, if

P � ηi(f(a), b), we require that b = f(cA
i a). Towards this end, let S be the unique

subset of 33 such that P �
∧

u∈S f(a) · 1u �= 0 ∧ ∧
u∈ 33\S f(a) · 1u = 0. So we obtain

b = tS = f(cA
i a).

We have proved that P is interpretable in A.4) Next, we extract an elementary
subalgebra B of A that is not a neat reduct, i. e., B is not in Nr3CA4. This will

4)Furthermore it is easy to see that the interpretation is one dimensional and quantifier free in the
sense of [18].
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imply that B /∈ Nr3CAβ for all β ≥ 4, since for any such β it is easy to see that
Nr3CAβ ⊆ Nr3CA4. Let Id ∈ 33 be the identity map on 3. Choose any countable
elementary Boolean subalgebra of boole(AId), BId say. Thus BId � boole(AId). By
the Feferman-Vaught Theorem [18, Corollary 9.6.5]

Q=((BId ×
∏

u∈ 33\Id boole(Au)), 1u, dij)u∈ 33, i, j<3

� (
∏

u∈ 33 boole(Au)), 1u, dij)u∈ 33, i,j<3 = P.

Let B be the result of applying the interpretation given above to Q. By [18, Theo-
rem 5.3.2 and Remark 3], B ≡ A as cylindric algebras. Indeed B � A. Therefore
B ∈ RCA3, where RCAβ denotes the class of representable CAβ (see [9]). In fact
it is easy to see that B is simple (since simplicity is expressible by a first order for-
mula) so that B is isomorphic to a Cs3. Now we show that B cannot be a neat
reduct, in fact we show that B /∈ Nr3CAβ for any β > 3. Assume, seeking a con-
tradiction, that B = Nr3D for some D ∈ CAβ with β > 3. Note that D may not
be representable. In this paper, this is the only place where we deal with possibly
non-representable algebras. Now χM

u ∈ B for each u ∈ 33. As is common prac-
tise, identifying functions with sequences, we let v = 〈1, 0, 2〉 ∈ 33. Let t(x) be the
unary CA2 term s01c1x · s10c0x, where sj

ix = ci(dij · x) for i �= j. Then we claim that
tB(χM

v ) = χM
Id . For better readability, in our calculations we omit the superscript B.

For the sake of brevity, we denote χM
v by 110 and χM

Id by 101. Then, by definition, we
have t(101) = c0(d01 · c1110) · c1(d01 · c0110). Computing we get

c0(d01 · c1110) = c0(d01 · (
∑{1u : u ≡1 110}) = c0(d01 · 1112) = 101 + 1112.

Here 1112 denotes χ〈1,1,2〉. Note that we are using that the evaluation of the term
c1110 in B is equal to its value in A. This is so because B inherits the interpretation
given to

∏
Au. A similar computation gives c1(d01 · c0101) = 1002 + 101, where 1002

denotes χ〈0,0,2〉. Therefore, as claimed, tB(110) = 101. Now let 3s(0, 1) be the unary
substitution term as defined in [8, 1.5.12], that is 3s(0, 1)x = s30s

0
1s

1
3(x). Then for any

β > 3 we have CAβ � 3s(0, 1)c3x ≤ t(c3x). Indeed, by [8, 1.5.12, 1.5.8 and 1.5.10(ii)],
we get

3s(0, 1)c3x≤ 3s(0, 1)c1c3x = s30s
0
1s

1
3c1c3x = s30s

0
1c1c3x = s30s

0
1c3c1x

= s30c3s
0
1c1x = c3s

0
1c1x = s10c1c3x.

Similarly 3s(0, 1)c3x ≤ s01c0c3x. Therefore, 3s(0, 1)c3x ≤ t(c3x). It thus follows that

D � 3s(0, 1)(110) ≤ s01c1(110) · s10c0(110) = 101.

Now 3s(0, 1) preserves ≤ and permutes Nr3D. In fact 3s(0, 1) is a Boolean automor-
phism of Nr3D with inverse 3s(1, 0). Now let

Bv = {x ∈ B : x ≤ 110} and Av = {x ∈ A : x ≤ 110}.
Then Bv = Av, and it follows (by property (4) of Lemma 2) that Bv is uncountable.
Since 3s(0, 1) is one to one, it follows that 3s(0, 1)Bv = {3s(0, 1)x : x ∈ Bv} has the
same cardinality as Bv. Now let x ∈ Bv. Then x ≤ 110. Since 3s(0, 1) preserves order
we have 3s(0, 1)x ≤3 s(0, 1)110 = 101. Thus 3s(0, 1)Bv ⊆ BId = {b ∈ B : b ≤ 101},
and so it follows that BId is uncountable too. But by construction, we have that
BId = {b ∈ B : b ≤ 101} is countable. This contradiction shows that B /∈ Nr3CAβ for
any β > 3. ✷
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We now conclude:
T h e o r em 1. Let β > 3. Then Nr3CAβ is not closed under forming elementary

subalgebras, hence is not elementary.
Now before proving Lemma 2, we consider certain refinements of Theorem 1,

obtained by narrowing the class CAβ.
D e f i n i t i o n 4. Let Wsβ stand for the class of weak set algebras of dimension β.

We recall from [9] that these are CAβ’s whose units are of the form
βU (p) = {s ∈ βU : |{i ∈ β : si �= pi}| < ω}

for some p ∈ βU . Let β be an infinite ordinal. Then Csregβ and Lfβ stand for the classes
of regular set algebras and for the locally finite algebras of dimension β, respectively.
We recall from [9, Definition 3.1.1(viii)] that A ∈ Csβ with unit βU is regular if for all
x ∈ A and for all f, g ∈ βU , whenever f � ∆x ⊆ g and f ∈ x, then g ∈ x. A ∈ Csβ is
locally finite if ∆x is finite for every element in A. Here ∆x, more commonly referred
to as the dimension set of x is the set {i ∈ β : ci(x) = jx} (cf. [8]).

We note that the class Lfω ∩ Csregω is the algebraic counterpart of first order
models. For more on such connections the reader is referred to [4], [9, Section 4.3],
and [21].5) By [9, Theorem 3.1.134], we have Wsβ ⊆ ICsβ ∩ Lfβ for any β > 3. Here I
stands for the operation of taking all isomorphic copies. For β > 2, RCAβ is a variety
that coincides with the class of all isomorphic copies of subdirect products of weak
set algebras. From the above we immediately get

C o r o l l a r y 5. Let β > 3. Let IWsβ ⊆ L ⊆ CAβ. Then Nr3L = {Nr3A : A ∈ L}
is not elementary. In particular, Nr3RCAβ is not elementary.

Corollary 5 answers Problem 18 on [10, p. 312] but only for the finite dimensional
case. The infinite version of Corollary 5 is proved in [29].

The rest of this section is devoted to proving Lemma 2. The construction is
model-theoretic, so we need to review some model-theoretic notions from [18].

D e f i n i t i o n 6.
(1) Let L be a signature and D an L structure. The age of D is the class K of

all finitely generated structures that can be embedded in D. A class K is the age
of D if the structures in K are up to isomorphism, exactly the finitely generated
substructures of D.
(2) Let K be a class of structures.
(i) K has the Hereditary Property, HP for short, if whenever A ∈ K and B is a

finitely generated substructure of A, then B is isomorphic to some structure
in K.

(ii) K has the Joint Embedding Property, JEP for short, if whenever A, B ∈ K,
then there is a C ∈K such that both A and B are embeddable in C.

(iii) K has Amalgamation Property, AP for short, if A, B, C ∈K and e : A −→ B,
f : A −→ C are embeddings, then there areD inK and embeddings g : B −→ D
and h : C −→ D such that g ◦ e = h ◦ f .

5)In fact, one can define an isomorphism h : Models −→ Lfω ∩Cs
reg
ω . This isomorphism is definable

in ZF (Zermelo Fraenkel set theory) by an absolute formula without parameters (cf. [21, p. 406]). In
[9, Section 4.3] h(N) for a given model N is denoted by CsN

ω . Thus Aω = CsM
ω constructed above

is in Csregω ∩ Lfω.
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(3) We call a structure D homogeneous if every isomorphism between finitely gen-
erated substructures extends to an automorphism of D.

We recall from [18, Theorem 7.1.2] a theorem of Fräıssé that puts the above
definitions in the context we need.

F a c t 7 (Fräıssé). Let L be a countable signature and let K be a non-empty
finite or countable set of finitely generated L-structures which has HP, JEP and AP.
Then there is an L structure D, unique up to isomorphism, such that

(1) D has cardinality ≤ ω,
(2) K is the age of D,
(3) D is homogeneous.

Following Hodges [18], we refer to D as Fräıssé limit of the class K. The next
theorem, also due to Fräıssé, gives a sufficient condition for when the Fräıssé limitD
of a class K of finitely generated structures has quantifier elimination. This condition
is that K is uniformly locally finite, a condition that is satisfied when the signature
of K is finite and has no function symbols, which is the form we need. Recall that
L-structure M has quantifier elimination if every L formula ϕ(x̄ ) is equivalent in M
to a Boolean combination of quantifier free formulas. We now recall from [18] the
form of Theorem 7.4.1 that we shall apply to construct our desired model.

F a c t 8 (Fräıssé). Suppose that the signature L is finite and has no function
symbols. Suppose that K is a countable set of finite L structures with HP, JEP
and AP. Let M be the Fräıssé limit of K. Then M has quantifier elimination.

Now we have all the necessary machinery to prove Lemma 2.
P r o o f o f L emma 2. Throughout the proof, we use the notation x̄, ā for finite

sequences or tuples 〈x0, . . .xm−1〉, 〈a0, . . .am−1〉. Given a structure M and a tuple ā,
we often write, with a slight abuse of notation, ā ∈ M instead of ā ∈ mM , where m
is the length of the tuple ā. The length of tuples will be clear from context. Let L
be the relational signature containing unary relation symbols P0, . . . , P3 and a 4-ary
relation symbol X. Let K be the class of all finite L-structures D satsfying

(1) ∀x∨
i<j<4(Pi(x) ∧

∧
j 	=i¬Pj(x)),

(2) ∀x0 . . .x3 (X(x0, . . . , x3)→ P3(x3) ∧
∨

u∈S3
χu).

Note that (1) simply says that the Pi’s are disjoint. Then K contains countably many
isomorphism types, because for each n ∈ ω, there are countably many isomorphism
types of finite L structures (satifying (1) and (2)) having cardinality ≤ n. Also, it
is easy to check that K is closed under substructures and that K has the AP. From
the latter it follows that it has the JEP, since K contains the one element structure
that is embeddable in any structure in K 6). By Fact 7 there is a countably infinite
homogeneous L-structure M with age K. By Fact 8, M has quantifier elimination,
and obviously, so does any elementary extension of M. K contains structures with
arbitrarily large P3-part, so PM

3 is infinite. Let M∗ be an elementary extension of
M such that |PM∗

3 | = |L|, and fix a bijection ∗ from the set of ternary relation
symbols of L to PM∗

3 . Define an L-structure M with domain PM∗
0 ∪ PM∗

1 ∪ PM∗
2 ,

6)It is not always true that AP implies JEP; think of fields.
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by PM
i = PM∗

i for i < 3 and such that for ternary R ∈ L, M � R(a0, a1, a2) iff
M∗ � X(a0, a1, a2, R∗). If ϕ(x̄ ) is any L-formula, let ϕ∗(x̄, R̄ ) be the L-formula
with parameters R̄ from M∗ obtained from ϕ by replacing each atomic subformula
R(x, y, z) by X(x, y, z, R∗) and relativizing quantifiers to ¬P3. In more detail, replace
∃xϕ(x) and ∀xϕ(x) by ∃x (¬P3(x) ∧ ϕ(x)) and ∀x (¬P3(x) → ϕ(x)), respectively.
A straightforward induction on complexity of formulas gives that for ā ∈ M ,
M � ϕ(ā ) iff M∗ � ϕ∗(ā, R̄ ). We show that M is as required, i. e., that M so
constructed satisfies conditions (1) to (6) of Lemma 2.

For quantifier elimination, if ϕ(x̄ ) is an L-formula, then ϕ∗(x̄, R̄∗) is equivalent in
M∗ to a quantifier free L-formula ψ(x̄, R̄∗). Then, replacing ψ’s atomic subformulas
X(x, y, z, R∗) by R(x, y, z), replacing all X(t0, . . . , t3) not of this form by ⊥, replacing
subformulas P3(x) by ⊥, and Pi(R∗) by ⊥ if i < 3 and ! if i = 3, gives a quantifier
free L-formula ψ equivalent in M to ϕ.

Now we check that property (2) holds. For this end, let

σ = ∀x (¬P3(x)→
∨

i<3(Pi(x) ∧
∧

j 	=i ¬Pj(x))).

Then K � σ, soM � σ andM∗ � σ. It follows from the definition thatM satisfies (2).
Checking property (3) is similar.
For property (4), let u ∈ S3 and let r, s ∈ PM

3 be distinct. Take a finite L-structure
D with points ai ∈ PD

ui
(i < 3) and distinct r′, s′ ∈ PD

3 with

D � X(a0, a1, a2, r′) ∧ ¬X(a0, a1, a2, s′).

Then D ∈ K, so D embeds into M. By homogeneity, we can assume that the
embedding takes r′ to r and s′ to s. Therefore M � ∃x̄ (χu ∧ X(x̄, r) ∧ ¬X(x̄, s)),
where x̄ = 〈x0, x1, x2〉. Since r, s were arbitrary and M∗ is an elementary extension
ofM, we get that

M∗ � ∀yz (P3(y) ∧ P3(z) ∧ y �= z → ∃x̄ (χu ∧ X(x̄, y) ∧ ¬(X(x̄, z))).

The result for M now follows. Note that it follows from properties (3) and (4) of
Lemma 2, that PM

i �= ∅ for each i < 3. So it is clear that

M � ∀x0x1x2 (∃xi χu ↔
∨

v∈ 33, v≡iu
χv),

giving (5).
Finally consider (6). Clearly, it is enough to show that for any L-formula ϕ(x̄ )

with parameters r̄ ∈ PM
3 , u ∈ S3 and i < 3, we have

M � ∃x̄ (χu ∧ ϕ)→ ∀x̄ (∃xi (χu → ∃xi (χu ∧ ϕ)).

In order to simplify notation assume that i = 2. Let ā, b̄ ∈ M with

M � (χu ∧ ϕ)(ā ) and M � ∃x2 (χu(b̄ )).

We requireM � ∃x2 (χu ∧ ϕ)(b̄ ). It follows from the assumptions that

M � Pu0(a0) ∧ Pu1(a1) ∧ a0 �= a1 and M � Pu0(b0) ∧ Pu1(b1) ∧ b0 �= b1.

These are the only relations on a0a1r̄ and on b0b1r̄ (cf. property (3) of Lemma 2), so
θ− = {(a0, b0)(a1, b1)(rl, rl) : l < |r̄|} is a partial isomorphism ofM. By homogeneity,
this partial isomorphism is induced by an automorphism θ of M. Let c̄ = θ(ā) =
(b0, b1, θ(a2)). Then M � (χu ∧ ϕ)(c̄). Since c̄ ≡2 b̄, we have M � ∃x2 (χu ∧ ϕ)(b̄ )
as required. ✷
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By proving Lemma 2, our proof of Theorem 1 and Corollary 3 is complete.
In what follows we comment on various refinements of Theorem 1, concerning

other algebras of logic and higher dimensions. Also we briefly discuss the significance
of the notion of neat reducts in (algebraic) logic.

3 Concluding remarks

(i) Let SC stand for the class of Pinter’s substitution algebras. These are defined
in the appendix of [22] or [32]. Let β > 3. Then it is proved in [32] that Nr3SCβ

is not closed under forming subalgebras. It follows from the above construction that
Nr3SCβ is not closed under forming elementary subalgebras. This can be seen by
passing to reducts. That is, let RdSCC be the SC reduct of a given C ∈ CA3.
Then RdSCA ∈ Nr3SCω and RdSCB /∈ Nr3SC4. In fact, the complete analogue of
Corollary 3 holds for SC’s, since reducts of weak set algebras are weak set algebras.
However, the construction adopted herein (in its present form) does not settle the QA
(quasipolyadic) and QEA (quasipolyadic equality) cases. This follows from the fact
that the term 3s(0, 1) which played the key role in showing that B is not a neat reduct,
is a basic operation in these algebras, whereas the proof of Theorem 1 depended on
the fact that this term is not even term definable in cylindric algebras. We refer the
reader to [27], where it is proved that when K is QA or QEA, and β > 2, then Nr2Kβ

is not first order axiomatizable.

(ii) Let RA be the class of Tarski’s relation algebras defined in e. g. [9, Defini-
tion 5.3.1]. For n > 2, RaCAn is the class of RA reducts of CAn defined in [9, 5.3.7]
or [15]. It is known that RaCAn ⊆ RA iff n > 3 and that RaCAn is not closed under
forming subalgebras for n > 2. This is proved by Maddux [19] and independently
by Németi and Simon (cf. [33, Chapter 5]). Ian Hodkinson pointed out to the
author that the ideas adopted herein may be used to prove that the class RaCAn,
n > 2, is not closed under elementary subalgebras. It is known that SRaCA4 = RA,
and that both of these classes coincide with SRaNr3CA4 = RaSNr3CA4, a result of
Maddux [19]. However SRaCAn is properly contained in RA for n > 4. It is worth
noting that an important question in CA and RA theory is: which subclasses of CA3

give rise to relation algebras when applying the Ra operator. In this connection the
reader is referred to [13, 15, 23] and [33, Chapter 5].

(iii) It seems likely that property (3) in Lemma 2 can be strengthened to show that
the relations in question are disjoint rather than distinct. In this case, the resulting
algebras A and B would be atomic and completely representable in the sense of [12].
Also, for each u ∈ S3 , the set of atoms below 1u would be an uncountable splitting of
1u in the sense of [2]. That is, letting AtA denote the set of atoms of A, we get that
for all u ∈ S3 and for all x ∈ AtA such that x ≤ 1u, x is cylindrically equivalent to 1u,
formally (∀i < 3) (cix = ci1u =

∑{1v : v ≡i u}). Andréka [2] refers to such atoms
as “big atoms”. The method of splitting elements (which is an instance of Henkin’s
method of dilation in the sense of [9, 3.2.69], see also [33, Chapter 4]7)) was used by

7)
Henkin’s own methods of splitting, introduced in [8, Lemma 2.6.12] to construct non-repre-

sentable CA’s, is different than Andréka’s splitting.
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Andréka in [2] to show that for ω > n > 2 and β > n+1 the class SNrnCAβ cannot
be axiomatized by a set of universal formulas containing only finitely many variables.
(iv) We have proved that first order logic cannot distinguish between the algebras

A ∈ Nr3CAω and B /∈ Nr3CA4. It seems likely that one can prove that stronger logics
like Lκω , where κ is a regular cardinal, also cannot distinguish between the algebras
A and B. We did not check that. In [29] we prove that for any pair of infinite ordinals
α < β, the class NrαCAβ is also not elementary.
(v) The tie between special neat embeddings and amalgamation properties in cylin-

dric-like algebras of relations is studied in [24, 32, 30]. Closure of the class of neat
reducts under forming subalgebras plays a crucial role in determining which subclasses
L ⊆ RCAn, n a countable ordinal, have the so called strong amalgamation property.
This connection was first observed by Pigozzi. (cf. [24, p. 325, Lemma 2.2.12(iii)]).
The (strong) amalgamation property is proved in algebraic logic to be the algebraic
counterpart of (strong) interpolation theorems (like Beth-Definability) in the corre-
sponding logics. This tie between the algebraic property of closure of the class of neat
reducts under forming subalgebras and the metalogical one of interpolation results
is further emphasized and investigated in [32, 30]. While Henkin shows that the
Neat Embedding Theorem (NET) corresponds to completeness of several variants of
first order logic (cf. [8, 3]), Pigozzi [24] shows that variation on NET corresponds to
interpolation properties in such variants. In [31] sharpenings of NET is investigated
in connection to the algebraic property of complete representations ([12]) and the
metalogical one of omitting types [5]. It is worth noting that in [12] Hirsch and
Hodkinson prove that the class of completely representable RCA3, or CR3 for short,
is not elementary either. In [31] it is proved that algebras in CR3 coincides with the
atomic algebras in the class ScNr3CAω, where Sc stands for the operation of forming
complete subalgebras.8)

(vi) Let Bn be the class of relation algebras having n-relational basis in the sense of
Maddux [20]. Then Bn coincides with the class CRAn of relation algebras having
n-square complete representations in the sense of [14]. In [14] it is pointed out that
CRAn is an n analogue of the class CRA of completely representable relation algebras.
Also it is proved that the class CRAn, n ≥ 5, is not elementary. In [32] it is proved
that the classes ScRaCAω and CRA coincide on countable algebras. In view of this
characterization, a candidate – other than the class CRAn – for an n-approximation or
n-analogue of CRA is the class of atomic algebras in ScRaCAn, obtained by truncating
the dimension ω to n. It turns out in [17] that, for n ≥ 4, this class coincides with
the class of relation algebras having n-dimensional hyperbasis in the sense of [14].
Now let RAn = SBn. While RAn and SRaCAn are n-analogues of RRA, CRAn and
atomic algebras in ScRaCAn are n-analogues of the class of completely representable
relation algebras. Recently Robin Hirsch [11] proved that, like CRAn, the class of
relation algebras having an n-dimensional hyperbasis is not elementary, either. In
fact, Robin Hirsch constructs an algebra B /∈ RaCAn such that an ultrapower of
B is in RaCAn. His (unpublished) construction, it seems, proves our Theorem 1 as
well.

8)Let A be a Boolean algebra. A subalgebra B of A is a complete subalgebra of A if for all X ⊆ A,
whenever ΣX exists in A, then ΣX exists in B, and they are equal.
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(vii) Let 1 < α < β. It is not hard to show that the class NrαCAβ is a pseudo-
elementary class, i. e, a PC∆ class in the sense of [18, p. 207]. A psuedo-elementary
class is roughly a reduct of an elementary class. Let ELNrαCAβ denote the elementary
closure of NrαCAβ, i. e, ELNrαCAβ = UpUrNrαCAβ where Up and Ur stand for the
operations of forming ultraproducts and ultraroots, respectively. By [32], [29] and
Theorem 1 herein, the inclusions NrαCAβ ⊂ ELNrαCAβ ⊂ SNrαCAβ are proper. In
particular, ELNrαCAβ is not closed under forming subalgebras hence is not (pseudo-)
universal. By [16] one can synthesize (and consequently obtain) an axiomatization of
the elementary class ELNrαCAβ by games, in the spirit of Robinson’s finite forcing
in Model theory. It seems plausible that the class ELNrαCAβ is finitely axiomatizable
over the variety SNrαCAβ. The latter is finitely axiomatizable if and only if β ≤ α+1,
a result of Andréka [2]. In particular, we conjecture that ELNrαCAβ is finitely
axiomatizable if and only if β ≤ α+ 1.
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